النماذج العصبية العشوائية الشرطية (CRF) النماذج العصبية القائمة هي من بين أكثر طرق أداء لحل مشاكل وضع التسلسل.على الرغم من نجاحها الكبير، إلا أن CRF لديه القصور في توليد تسلسلات غير قانونية في بعض الأحيان، على سبيل المثالتسلسلات تحتوي على علامة I- '' مباشرة بعد علامة o ''، ممنوع من مخطط الوسم الحيوي الأساسي.في هذا العمل، نقترح حقل عشوائي مشروط ملثم (MCRF)، وسهل تنفيذ البديل CRF الذي يفرض قيودا على مسارات المرشحين خلال كل من مراحل التدريب وفك الشفرة.نظرا لأن الطريقة المقترحة يحل تماما هذه المشكلة وتجلب تحسنا كبيرا على النماذج القائمة على CRF الموجودة مع تكلفة إضافية بالقرب من الصفر.
Conditional Random Field (CRF) based neural models are among the most performant methods for solving sequence labeling problems. Despite its great success, CRF has the shortcoming of occasionally generating illegal sequences of tags, e.g. sequences containing an I-'' tag immediately after an O'' tag, which is forbidden by the underlying BIO tagging scheme. In this work, we propose Masked Conditional Random Field (MCRF), an easy to implement variant of CRF that impose restrictions on candidate paths during both training and decoding phases. We show that the proposed method thoroughly resolves this issue and brings significant improvement over existing CRF-based models with near zero additional cost.
المراجع المستخدمة
https://aclanthology.org/
في هذه المقالة، نعرض ونناقش تجربتنا في تطبيق طريقة الفصول الدراسية المنطقية لتدريس الحقول العشوائية المشروطة في دورة معالجة اللغة الطبيعية.نقدم الأنشطة التي تطورناها مع علاقتها بنموذج التعقيد المعرفي (التصنيف الإزهار).بعد ذلك، نحن نقدم انعكاسات وتوقع
نحن نبحث كيف يمكن تعديل محولات مستوى الجملة في وضع علامات تسلسل فعالة على مستوى الرمز المميز دون أي إشراف مباشر.لا تؤدي الأساليب الموجودة إلى وضع العلامات على التسلسل الصفرية جيدا عند تطبيقها على الهندسة القائمة على المحولات.نظرا لأن المحولات تحتوي ع
ثبت أن دمج المعرفة المعجمية في نماذج التعلم العميق قد تكون فعالة للغاية لمهام وضع التسلسل.ومع ذلك، فإن الأمر السابق يعمل عادة صعوبة في التعامل مع المعجم الديناميكي النطاق الذي يسبب غالبا ضوضاء مطابقة مفرطة ومشاكل التحديثات المتكررة.في هذه الورقة، نقت
استخراج الرأي المستهدف واستخراج الأجل رأي هما مهمتان أساسيتان في تحليل المعرفات القائم على الجانب (ABASA). تركز العديد من الأعمال الأخيرة على ABSA على استخراج كلمات الرأي الموجهة نحو الهدف (TOWE) (Towe)، والتي تهدف إلى استخراج كلمات الرأي المقابلة لل
تهدف وضع العلامات للتسلسل إلى التنبؤ بتسلسل غرامة من الملصقات للنص. ومع ذلك، تعوق هذه الصياغة فعالية الأساليب الخاضعة للإشراف بسبب عدم وجود بيانات مشروحة على مستوى الرمز المميز. يتم تفاقم هذا عندما نلتقي مجموعة متنوعة من اللغات. في هذا العمل، نستكشف