استخراج الرأي المستهدف واستخراج الأجل رأي هما مهمتان أساسيتان في تحليل المعرفات القائم على الجانب (ABASA). تركز العديد من الأعمال الأخيرة على ABSA على استخراج كلمات الرأي الموجهة نحو الهدف (TOWE) (Towe)، والتي تهدف إلى استخراج كلمات الرأي المقابلة للحصول على هدف رأي معين. يمكن تطبيق Towe أكثر استخداما على استخراج زوج الرأي في الجانب (AOPE) الذي يهدف إلى استخراج الجوانب (أي أهداف الرأي) وشروط الرأي في أزواج. في هذه الورقة، نقترح تسلسل تسلسل محدد بالهدف مع اهتمام الذات متعدد الرأس (TSMSA) ل Towe، حيث يمكن دمج أي نموذج لغة مدرب مسبقا مع اهتمام ذاتي متعدد الرأس بشكل مريح. كدراسة حالة، نقوم أيضا بتطوير هيكل متعدد المهام يدعى MT-TSMSA من أجل الجمع بين TSMSA لدينا مع وحدة استخراج الجانب والرأي. تشير النتائج التجريبية إلى أن TSMSA تتفوق على الأساليب القياسية على Towe بشكل ملحوظ؛ وفي الوقت نفسه، فإن أداء MT-TSMSA متشابه أو حتى أفضل من نماذج خط الأساس الحديثة.
Opinion target extraction and opinion term extraction are two fundamental tasks in Aspect Based Sentiment Analysis (ABSA). Many recent works on ABSA focus on Target-oriented Opinion Words (or Terms) Extraction (TOWE), which aims at extracting the corresponding opinion words for a given opinion target. TOWE can be further applied to Aspect-Opinion Pair Extraction (AOPE) which aims at extracting aspects (i.e., opinion targets) and opinion terms in pairs. In this paper, we propose Target-Specified sequence labeling with Multi-head Self-Attention (TSMSA) for TOWE, in which any pre-trained language model with multi-head self-attention can be integrated conveniently. As a case study, we also develop a Multi-Task structure named MT-TSMSA for AOPE by combining our TSMSA with an aspect and opinion term extraction module. Experimental results indicate that TSMSA outperforms the benchmark methods on TOWE significantly; meanwhile, the performance of MT-TSMSA is similar or even better than state-of-the-art AOPE baseline models.
المراجع المستخدمة
https://aclanthology.org/
يجذب اهتمام الذات متعدد الرأس مؤخرا اهتماما هائلا بسبب وظائفه المتخصصة، والحساب المتوازي الهامة، والقابلية للتمويل المرن. ومع ذلك، تظهر الدراسات التجريبية الحديثة للغاية أن بعض رؤساء الانتباه الذاتي يكسبون مساهمة ضئيلة ويمكن تقليم رؤوس زائدة عن الحاج
تهدف وضع العلامات للتسلسل إلى التنبؤ بتسلسل غرامة من الملصقات للنص. ومع ذلك، تعوق هذه الصياغة فعالية الأساليب الخاضعة للإشراف بسبب عدم وجود بيانات مشروحة على مستوى الرمز المميز. يتم تفاقم هذا عندما نلتقي مجموعة متنوعة من اللغات. في هذا العمل، نستكشف
نحن نبحث كيف يمكن تعديل محولات مستوى الجملة في وضع علامات تسلسل فعالة على مستوى الرمز المميز دون أي إشراف مباشر.لا تؤدي الأساليب الموجودة إلى وضع العلامات على التسلسل الصفرية جيدا عند تطبيقها على الهندسة القائمة على المحولات.نظرا لأن المحولات تحتوي ع
بعد أداء متزايد لأنظمة الترجمة الآلية العصبية، تتم الآن دراسة نموذج استخدام البيانات المترجمة تلقائيا للتكيف عبر اللغات في العديد من المجالات المعمارية.لا تزال القدرة على شرح المشروع بدقة، ومع ذلك، فإن هناك مشكلة في مهام علامات التسلسل حيث يجب توقع ا
تحتوي المهام القياسية الحالية لمعالجة اللغة الطبيعية على نص مختلف عن النص المستخدم في اليومي غير الرسمي إلى الاتصال الرقمي اليومي. أدى هذا التناقض إلى تدهور الأداء الشديد لنماذج NLP الحديثة عندما يتم ضبطها بشكل جيد على بيانات العالم الحقيقي. طريقة وا