ترغب بنشر مسار تعليمي؟ اضغط هنا

اختلافات المجال: مسح وتحليل تجريبي

Domain Divergences: A Survey and Empirical Analysis

243   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يلعب اختلاف المجال دورا مهما في تقدير أداء نموذج في مجالات جديدة. في حين أن هناك أدب كبيرا على تدابير الاختلاف، يجد الباحثون صعوبة في اختيار الاختلاف المناسب لتطبيق NLP معين. نحن نتطلع إلى هذا القصور من قبل كل من المسح الأدبيات ومن خلال دراسة تجريبية. نحن نطور تصنيفا من تدابير الاختلاف التي تتكون من ثلاث فصول --- إجراءات نظرية ونشرية هندسية وترتيب أعلى وتحديد العلاقات بينهما. علاوة على ذلك، لفهم حالات الاستخدام المشترك لهذه التدابير، نحن ندرك ثلاث تطبيقات جديدة - 1) اختيار البيانات، 2) تمثيل التعلم، و 3) القرارات في البرية - واستخدامها لتنظيم أدبنا. من هذا، نحدد أن التدابير النظريية للمعلومات منتشرة لمدة 1) و 3)، وتدابير ذات ترتيب أعلى أكثر شيوعا لمدة 2). لمزيد من المساعدة في مساعدة الباحثين في اختيار التدابير المناسبة للتنبؤ بالانخفاض في الأداء - وهو جانب مهم في القرارات في البرية، نقوم بإجراء تحليل العلاقة الممتدة 130 سيناريوهات تكيف المجال، و 3 مهام NLP متنوعة و 12 تدابير مختلفة تم تحديدها من مسحنا. لحساب هذه الاختلافات، نعتبر تمثيلات الكلمات السياقية الحالية (CWR) والتباين من التمثيلات الموزعة الأكبر سنا. نجد أن التدابير التقليدية على توزيعات الكلمات لا تزال تعمل كأساس قواعد قوية، في حين أن تدابير ذات طلب أعلى مع CWR فعالة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يجعل معالجة اللغة الطبيعية الحديثة (NLP) استخداما مكثفا لأساليب التعلم العميق بسبب الدقة التي تقدمها لمجموعة متنوعة من التطبيقات.نظرا للتأثير البيئي الكبير للبيئة للتعلم العميق، تم اقتراح تحليل التكلفة والفائدة بما في ذلك بصمة الكربون وكذلك تدابير ال دقة لتحسين توثيق استخدام أساليب NLP للبحث أو النشر.في هذه الورقة، نراجع الأدوات المتاحة لقياس استخدام الطاقة وانبعاثات ثاني أكسيد الكربون لأساليب NLP.نحن تصف نطاق التدابير المقدمة ومقارنة استخدام ستة أدوات (تعقب الكربون، تعقب تأثير التجريب، الخوارزميات الخضراء، تأثير ثاني أكسيد الكربون، واستخدام الطاقة والاستزمي) على تجارب التعرف على الكيان المسماة المنجزة على إعدادات حسابية مختلفة (الخادم المحليمقابل مرفق الحوسبة).بناء على هذه النتائج، نقترح توصيات قابلة للتنفيذ لقياس الأثر البيئي بدقة تجارب NLP.
نادرا ما تعطي أنظمة NLP اعتبارا خاصا للأرقام الموجودة في النص.هذا يتناقض بشكل صارخ مع توافق الآراء في علم الأعصاب، في الدماغ، يتم تمثيل الأرقام بشكل مختلف عن الكلمات.نحن نقوم بترتيب أعمال NLP الأخيرة على الحساب في تصنيف شامل للتصنيف والأساليب.نقوم بف حص الفكرة الشخصية للعسمة في 7 مجموعات فرعية، مرتبة على طول الأبعاد: الحبيبية (التقريبي الدقيق التقريبي) والوحدات (مجردة مقابل مؤسسة).نقوم بتحليل الخيارات التمثيلية لا تعد ولا تحصى التي قامت بأكثر من عشرة أرقام منشورة سابقا وروائح الكشف.نتوضع أفضل الممارسات لتمثيل الأرقام في النص والتعبير عن رؤية للحساب الشمولي في NLP، تتألف من مفاضات التصميم وتقييم موحد.
تتيح المعالجة الإضافية أنظمة تفاعلية تستجيب بناء على المدخلات الجزئية، وهي خاصية مرغوبة على سبيل المثال في عوامل الحوار. تقوم بنية المحولات الشعبية حاليا بطبيعتها بمعالجة التسلسلات ككل، تجرد فكرة الوقت. محاولات العمل الحديثة لتطبيق المحولات بشكل تدري جي عن طريق إعادة التشغيل - تدريجيا من خلال التغذية بشكل متكرر، إلى نموذج غير متقلب، بادئات إدخال أطول بشكل متزايد لإنتاج مخرجات جزئية. ومع ذلك، فإن هذا النهج مكلف بشكل حسابي ولا يتجادل بكفاءة للتسلسل الطويل. بالتوازي، نشهد جهود لجعل المحولات أكثر كفاءة، على سبيل المثال المحول الخطي (LT) مع آلية تكرار. في هذا العمل، ندرس جدوى LT ل NLU تدريجي باللغة الإنجليزية. تبين نتائجنا أن نموذج LT المتكرر لديه أفضل أداء تدريجي وسرعة الاستدلال أسرع مقارنة بالمحول القياسي واللفنت مع إعادة التشغيل التدريجي، بتكلفة جزء من جودة غير متزايدة (التسلسل الكامل). نظرا لأن إسقاط الأداء يمكن تخفيفه عن طريق تدريب النموذج لانتظار السياق الصحيح قبل الالتزام بإخراج وأن التدريب بادئة الإدخال مفيد لتقديم المخرجات الجزئية الصحيحة.
قامت الأبحاث الحديثة بالتحقيق في Quantum NLP، تصميم الخوارزميات التي تعالج اللغة الطبيعية في أجهزة الكمبيوتر الكمومية، وكذلك الخوارزميات الملهمة الكمومية التي تحسن أداء NLP على أجهزة الكمبيوتر الكلاسيكية.في هذا الاستطلاع، نراجع الأساليب التمثيلية عند تقاطعات NLP والفيزياء الكمومية في السنوات العشر الماضية، مما يصنفها وفقا لاستخدام نظرية الكم، والأهداف اللغوية التي يتم تصميمها، والتطبيق المصب.تنتهي مراجعة الأدبيات بمناقشة حول العوامل الرئيسية للنجاح الذي حققه العمل الحالي، وكذلك التحديات المقبلة، بهدف فهم أفضل الوعود والمزيد من الاتجاهات.
تركز هذه الورقة على إعادة صياغة إعادة صياغة النص، وهي مهمة توليد اللغة الطبيعية المدروسة على نطاق واسع في NLP.مع تطور النماذج العصبية، أظهرت أبحاث توليد إعادة صياغة التحول التدريجي إلى الأساليب العصبية في السنوات الأخيرة.وقد قدم ذلك بهيئات تمثيل سياق ي لنص المدخلات وتوليد صياغة تشبه الإنسان تشبه الإنسان بطلاقة.تقوم هذه الورقة بإجراء مناهج مختلفة لإعادة صياغة إعادة صياغة التركيز الرئيسي على الأساليب العصبية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا