ترغب بنشر مسار تعليمي؟ اضغط هنا

المكافآت مع أمثلة سلبية لتلخيص المخروطية التي تركز على الموضوع

Rewards with Negative Examples for Reinforced Topic-Focused Abstractive Summarization

269   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نعتبر مشكلة تلخيص المبشير الذي تركز على الموضوع، حيث يكون الهدف هو إنشاء ملخص إغراق يركز على موضوع معين، عبارة واحدة أو عدة كلمات.نحن نفترض أن مهمة توليد ملخصات تركز على موضوع يمكن تحسينها عن طريق إظهار النموذج ما يجب ألا تركز عليه.نقدم نهج تعليمي عميق لتعزيز التلخصات المبخرية التي تركز على الموضوع، تدربت على المكافآت مع خط الأساس من الأمثلة السلبية الجديدة.نحن نحدد المدخلات في هذه المشكلة كنص المصدر الذي سبقه الموضوع.نحن نتكيف مع بيانات CNN-Daily Mail و Summarization New York Times Farmarization لهذه المهمة.ثم نوضح بعد ذلك من خلال تجارب في المكافآت الحالية أن استخدام خط الأساس للمثال السلبي يمكن أن يتفوق على استخدام خط الأساس الحرج الذاتي، في روج، برث، مقاييس التقييم البشري.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مع الوفاء المتزايد من نصوص الاجتماعات، اجتذبت ملخص الاجتماع المزيد والمزيد من الاهتمام من الباحثين. حققت طريقة التدريب المسبق غير المعروضة على أساس هيكل المحولات المبلغة مع ضبط المهام المصب الناجمة نجاحا كبيرا في مجال تلخيص النص. ومع ذلك، فإن الهيكل الدلالي وأسلوب حقول الاجتماع يختلف تماما عن مقالات. في هذا العمل، نقترح شبكة فك ترميز ترميز ترميز هيرسلجية ذات مهام مسبقة مهام متعددة. على وجه التحديد، نحن نخفي الجمل الرئيسية في تشفير مستوى الكلمات وتوليدها في وحدة فك الترميز. علاوة على ذلك، نقع بشكل عشوائي بعض محاذاة الدور في نص الإدخال وإجبار النموذج على استعادة علامات الدور الأصلية لإكمال المحاذاة. بالإضافة إلى ذلك، نقدم آلية تجزئة موضوعا لمواصلة تحسين جودة الملخصات التي تم إنشاؤها. تظهر النتائج التجريبية أن طرازنا متفوق على الأساليب السابقة في مجموعات بيانات ملخص الاجتماع AMI و ICSI.
في هذه الورقة، نركز على تحسين جودة الملخص الذي تم إنشاؤه بواسطة أنظمة تلخيص الحوار المبشور العصبي.على الرغم من أن طرازات اللغة المدربة مسبقا تولد نتائج رائعة واعدة، إلا أنها لا تزال تحديا لتلخيص محادثة المشاركين المتعددين منذ أن تتضمن الملخص وصفا للو ضع العام وإجراءات كل مكبر صوت.تقترح هذه الورقة استراتيجيات ذات إشراف ذاتي لتصحيح ما بعد تركز على المتكلم في تلخيص حوار المبادرة.على وجه التحديد، تميز نموذجنا أولا أي نوع من تصحيح المتكلم مطلوب في مشروع ملخص ثم يولد ملخص منقح وفقا للنوع المطلوب.تظهر النتائج التجريبية أن أسلوبنا المقترح بتصحيح مشاريع الملخصات بشكل كاف، ويتم تحسين الملخصات المنقحة بشكل كبير في كل من التقييمات الكمية والنوعية.
على عكس النص المنظم جيدا، مثل التقارير الإخبارية ومقالات الموسوعة، غالبا ما يأتي محتوى الحوار من محاورين أو أكثر، وتبادل المعلومات مع بعضها البعض. في مثل هذا السيناريو، يمكن أن يختلف موضوع المحادثة عند التقدم والمعلومات الأساسية لموضوع معين في كثير م ن الأحيان متناثرة عبر مختلف الكلام من المتكلمين المختلفة، مما يطرح التحديات التي تلخص التخلص من الحوارات بشكل مجردة. لالتقاط معلومات الموضوع المختلفة للمحادثة والحقائق البارزة على الموضوعات التي تم الاستيلاء عليها، يقترح هذا العمل أهدافا للتعلم المتعاواة على علم الموضوع، وهي اكتشاف الاتساق وأهداف الجيل الموجزة الفرعية، والتي من المتوقع أن تقوم بها ضمنيا في تغيير موضوع وتغيير الموضوع تحديات تثير المعلومات لمهمة تلخيص الحوار. يتم تأطير الأهداف المقنعة المقترحة بمثابة مهام مساعدة لمهمة تلخيص الحوار الأساسي، المتحدة عبر استراتيجية تحديث معلمة بديلة. توضح تجارب واسعة النطاق على مجموعات البيانات القياسية أن الطريقة البسيطة المقترحة تتفوق بشكل كبير على خطوط الأساس القوية وتحقق أداء جديد من بين الفني. الرمز والنماذج المدربة متاحة للجمهور عبر.
في معظم الحالات، فإن الافتقار إلى Corpora الموازي يجعل من المستحيل مباشرة على تدريب النماذج الخاضعة للإشراف لمهمة نقل نمط النص.في هذه الورقة، نستكشف خوارزميات التدريب التي تقوم بدلا من ذلك تحسين وظائف المكافآت التي تنظر صراحة في جوانب مختلفة من النوا تج التي يتم تحويلها بالسليب.على وجه الخصوص، نحن نستفيد مقاييس التشابه الدلالي المستخدمة في الأصل لنماذج الترجمة الآلية العصبية بشكل جيد لتقييم الحفاظ على المحتوى بشكل صريح بين مخرجات النظام ونصوص الإدخال.نحقق أيضا في نقاط الضعف المحتملة للمقاييس التلقائية الحالية واقتراح استراتيجيات فعالة لاستخدام هذه المقاييس للتدريب.تظهر النتائج التجريبية أن طرازنا يوفر مكاسب كبيرة في كل من التقييم التلقائي والإنساني على أساس الأساس القوي، مما يشير إلى فعالية أساليبنا المقترحة واستراتيجيات التدريب.
التعاطف هو قدرات معرفية معقدة تستند إلى منطق الدول العاطفية الأخرى. من أجل فهم الآخرين بشكل أفضل والتعبير عن التعاطف الأقوى في الحوارات، نجادل بأننا يجب معالجة قضيتين في الوقت نفسه: (1) تحديد أي كلمة هي سبب عاطفة الآخر من كلامه و (2) تعكس تلك كلمات م حددة في توليد الاستجابة. ومع ذلك، فإن النهج السابقة للتعرف على العاطفة تسبب الكلمات في النص تتطلب شرحا مستوى الكلامة الفرعية، والتي يمكن أن تكون مطالبة. من خلال الإلهام من الإدراك الاجتماعي، فإننا نستفيد من مقدر إجمالي لاستنتاج العاطفة تسبب كلمات من كلام مع عدم وجود تسمية على مستوى الكلمات. أيضا، نقدم طريقة جديدة بناء على البراغماتية لجعل نماذج الحوار تركز على الكلمات المستهدفة في المدخلات أثناء التوليد. تنطبق طريقنا على أي نماذج حوار بدون تدريب إضافي على الطيران. نظهر أن نهجنا يحسن العديد من وكلاء حوار أفضل أداء في توليد الاستجابات التعاطفية الأكثر تركيزا من حيث التقييم التلقائي والبشري.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا