ترغب بنشر مسار تعليمي؟ اضغط هنا

التقاط غير صحيح المتكلم: تصحيح ما بعد التركيز على السماعات لتلخيص الحوار الجماعي

Capturing Speaker Incorrectness: Speaker-Focused Post-Correction for Abstractive Dialogue Summarization

297   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نركز على تحسين جودة الملخص الذي تم إنشاؤه بواسطة أنظمة تلخيص الحوار المبشور العصبي.على الرغم من أن طرازات اللغة المدربة مسبقا تولد نتائج رائعة واعدة، إلا أنها لا تزال تحديا لتلخيص محادثة المشاركين المتعددين منذ أن تتضمن الملخص وصفا للوضع العام وإجراءات كل مكبر صوت.تقترح هذه الورقة استراتيجيات ذات إشراف ذاتي لتصحيح ما بعد تركز على المتكلم في تلخيص حوار المبادرة.على وجه التحديد، تميز نموذجنا أولا أي نوع من تصحيح المتكلم مطلوب في مشروع ملخص ثم يولد ملخص منقح وفقا للنوع المطلوب.تظهر النتائج التجريبية أن أسلوبنا المقترح بتصحيح مشاريع الملخصات بشكل كاف، ويتم تحسين الملخصات المنقحة بشكل كبير في كل من التقييمات الكمية والنوعية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصنيف قانون الحوار (DA) هو مهمة تصنيف الكلمات فيما يتعلق بالوظيفة التي يخدمها في حوار.الأساليب الحالية لإعلام نموذج تصنيف DA دون دمج التغييرات بدوره بين مكبرات الصوت في جميع أنحاء الحوار، وبالتالي تعاملها لا تختلف عن النص المكتوب غير التفاعلي.في هذه الورقة، نقترح دمج التغييرات بدوره في المحادثات بين مكبرات الصوت عند النمذجة DAS.على وجه التحديد، نحن نتعلم المحادثة - تحويل المتكلم بدوره لتمثيل المتكلم يتحول في محادثة؛ثم يتم دمج Attringdings بدوره المتحدث المستفاد مع تضمين الكلام لمهام التنفيذ في تصنيف DA.مع هذه الآلية البسيطة والفعالة، فإن نموذجنا قادر على التقاط الدلالات من محتوى الحوار أثناء محاسبة المتكلم المختلفة في محادثة.التحقق من الصحة على ثلاث مجموعات بيانات عامة معيار يدل على الأداء الفائق لنموذجنا.
في السنوات الأخيرة، يمكن لنظام توليف الكلام إنشاء خطاب بجودة الكلام العالية. ومع ذلك، لا يزال نظام النص إلى كلام متعدد الكلام (TTS) يتطلب كمية كبيرة من بيانات الكلام لكل مكبر صوت مستهدف. في هذه الدراسة، نود إنشاء نظام TTS متعدد المتكلم من خلال دمج وح دات فرعية في نظام توليف الكلام المصنوع من الشبكة العصبية المصطنعة لتخفيف هذه المشكلة. تتمثل الوحدة الأولى في إضافة مكبر صوت إلى وحدة الترميز لتوليد الكلام في حين أن كمية كبيرة من بيانات الكلام من السماعة المستهدفة ليست ضرورية. بالنسبة لطريقة تضمين المتكلم، في دراستنا، يتم مقارنة طريقتان رئيسيتان لضمان المتكلم، وهي تضمين مكبر الصوت التضمين وإدماج تحويل الصوت، بتحديد ما هو مناسب لنظام TTS الشخصي الخاص بنا. ثانيا، استبدلنا الوحدة النمطية الإضافية التقليدية، التي تم تبنيها لتعزيز تسلسل طيف الإخراج، لزيادة تحسين جودة خطاب الكلام الذي تم إنشاؤه. هنا، يتم استخدام شبكة ما بعد المرشح. أخيرا، أظهرت نتائج التجربة أن تضمين المتكلم مفيد من خلال إضافةه إلى وحدة ترميز ونطق الكلام الناتج ينظر بالفعل إلى السماعة المستهدفة. أيضا، شبكة ما بعد التصفية ليست فقط تحسين جودة الكلام وتعزز أيضا تشابه المتكلم من كلام الكلام الناتج. يمكن لنظام TTS المصمم أن يولد كلام الكلام للمتكلم المستهدف في أقل من 2 ثانية. في المستقبل، نود مزيد من التحقيق في مكافحة قابلية التحكم في معدل التحدث أو حالة المشاعر المتصورة للكلمة التي تم إنشاؤها.
كانت جودة تلخيص الجماعة لديها تحسينات كبيرة منذ تقنيات محاكاة اللغة الأخيرة.ومع ذلك، هناك حاليا نقص في مجموعات البيانات للاحتياجات المتزايدة لتطبيقات تلخيص المحادثة.وبالتالي نحن جمعنا منتديات، مجموعة بيانات ملخصة محادثة متنوعة وعالية الجودة مع ملخصات مكتوبة بشرية.تتم جمع المحادثات في DiversionMum DataSet من مجموعة واسعة من منتديات الإنترنت.لجعل مجموعة البيانات قابلة للتوسيع بسهولة، نقوم أيضا بإصدار عملية إنشاء DataSet.تظهر تجاربنا أن النماذج المدربة على Forumsum لديها أفضل صفر - لقدرة على تحويل القليل من الطوابق إلى مجموعات البيانات الأخرى من بيانات ملخصات الدردشة الكبيرة الحالية Samsum.نظهر أيضا أن استخدام Corpus Corpustation للمحدثين يحسن ما قبل التدريب على تحسين جودة نموذج تلخيص الدردشة.
تم العثور على ملخصات إطفاء التلقائي في كثير من الأحيان تشويه الحقائق أو اختصاصها في المقال.هذا التناقض بين الملخص والنص الأصلي قد أثر بشكل خطير على قابليته للتطبيق.نقترح نموذج تلخيص الحقائق FASUM لاستخراج ودمج العلاقات الواقعية في عملية توليد الموجز عبر انتباه الرسم البياني.ثم نقوم بتصميم نموذج مصحح واقعي FC لتصحيح الأخطاء الواقعية تلقائيا من الملخصات الناتجة عن الأنظمة الحالية.تظهر النتائج التجريبية أن تلخيص حقائق الحقائق يمكن أن تنتج ملخصات إخراج مع اتساق واقعي أعلى مقارنة بالنظام الحالي، ونموذج التصحيح يحسن الاتساق الواقعي الملخصات المعطاة عن طريق تعديل عدد قليل فقط من الكلمات الرئيسية.
يجلب الفهم القراءة آلة حوار متعدد الأحزاب (MRC) تحديا هائلا لأنه ينطوي على مكبرات صوت متعددة في حوار واحد، مما أدى إلى تدفقات معلومات المتكلم المعقدة وسياقات الحوار الصاخبة.لتخفيف هذه الصعوبات، تركز النماذج السابقة على كيفية دمج هذه المعلومات باستخدا م الوحدات النمطية المستندة إلى الرسم البياني المعقدة والبيانات الإضافية المسمى يدويا، والتي عادة ما تكون نادرة في السيناريوهات الحقيقية.في هذه الورقة، نقوم بتصميم مهام التنبؤ ذات الإشراف الذاتي والخالية من العمالة في العمل على المتكلم والكلام الرئيسي للنموذج الضمني لتدفقات معلومات المتكلم، والتقاط أدلة بارزة في حوار طويل.تبرر النتائج التجريبية على مجموعة من مجموعات البيانات القياسية لفعالية أسلوبنا على أساس الأساس التنافسي والنماذج الحديثة الحالية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا