أصبح استخدام نماذج اللغة المحددة مسبقا، التي تم ضبطها بشكل جيد لأداء مهمة محددة من النهر، على نطاق واسع في NLP.ومع ذلك، قد يكون استخدام نموذج لغة عامة في المجالات المتخصصة، دون المستوى شبه الأمثل بسبب الاختلافات في استخدام اللغة والمفردات.في هذه الورقة، يتم التحقيق في ما إذا كان يمكن تحسين نموذج لغة قائم على اللغة السويدية للمجال السريري من خلال استمرار الاحتجاج بالنص السريري.يتم ضبط نماذج اللغة العامة ومجموعة من المجال بشكل جيد وتقييمها على ثلاثة مهام NLP السريرية الممثلة: (1) تحديد المعلومات الصحية المحمية، (2) تعيين رموز تشخيص ICD-10 إلى الملخصات التفريغ، و (3) عدم اليقين على مستوى الجملةتنبؤ.تظهر النتائج أن الاحيلية المستمرة على البيانات داخل المجال تؤدي إلى تحسين الأداء على جميع المهام الثلاثة المصب، مما يشير إلى وجود قيمة مضافة محتملة لنماذج اللغة الخاصة بالمجال ل NLP السريري.
The use of pretrained language models, fine-tuned to perform a specific downstream task, has become widespread in NLP. Using a generic language model in specialized domains may, however, be sub-optimal due to differences in language use and vocabulary. In this paper, it is investigated whether an existing, generic language model for Swedish can be improved for the clinical domain through continued pretraining with clinical text. The generic and domain-specific language models are fine-tuned and evaluated on three representative clinical NLP tasks: (i) identifying protected health information, (ii) assigning ICD-10 diagnosis codes to discharge summaries, and (iii) sentence-level uncertainty prediction. The results show that continued pretraining on in-domain data leads to improved performance on all three downstream tasks, indicating that there is a potential added value of domain-specific language models for clinical NLP.
المراجع المستخدمة
https://aclanthology.org/
نقدم العمل الجاري لتقييم، لمعرفتنا، أول نموذج لغز إذن كبير تم تدريبه على التحدث باللغة السويدية، باستخدام البيانات من Flashback من مناقشة النقاش عبر الإنترنت.نقوم بإجراء دراسة تجريبية للتقييم البشري تشير إلى أن النموذج غالبا ما يكون في الغالب من الاس
طبقات محول خفيفة الوزن، وحدات يمكن إدراجها بين طبقات المحولات. يستكشف العمل الأخير باستخدام مثل هذه الطبقات للترجمة الآلية العصبية (NMT)، لتكييف النماذج المدربة مسبقا إلى مجالات جديدة أو أزواج لغة، والتدريب فقط مجموعة صغيرة من المعلمات لكل إعداد جديد
شاركت في WMT مشاركتها الأخبار مهمة الترجمة والتركيز على زوج واحد في لغة الموارد عالية: الإنجليزية والصينية (اتجاهين، صينيين إلى اللغة الإنجليزية والإنجليزية إلى الصينية).تركز الأنظمة المقدمة (Zenghuimt) على تنظيف البيانات، واختيار البيانات، والترجمة
مع التقدم في نماذج اللغة العصبية، تحول تركيز إجراءات الاختاذ اللغوية من النهج القائمة على الأجيال القائمة على الأجيال.في حين أن قدرة الحمولة الأخيرة في الحمولة مثيرة للإعجاب، تظل توليد النصوص الحقيقية مظاهرة تحديا.في هذه الورقة، نقوم بإعادة النظر في
نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف