يمكن أن تكون كمية المعلومات المتاحة عبر الإنترنت ساحقة للمستخدمين من هضمها، خاصة عند التعامل مع تعليقات المستخدمين الآخرين عند اتخاذ قرار بشأن شراء منتج أو خدمة. في هذا السياق، تكون أنظمة تلخيص الرأي ذات قيمة كبيرة، واستخراج معلومات مهمة من النصوص وتقديمها للمستخدم بطريقة أكثر فهمة. من المعروف أيضا أن استخدام التمثيلات الدلالية يمكن أن يفيدن جودة الملخصات التي تم إنشاؤها. تهدف هذه الورقة إلى تطوير أساليب تلخيص الرأي بناء على مجردة معنى تمثيل النصوص في اللغة البرتغالية البرازيلية. تم التحقيق في أربع طرق مختلفة، إلى جانب بعض مناهج الأدب. تظهر النتائج أن الأسلوب المستند إلى جهاز التعلم الآلي أنتج ملخصات ذات جودة أعلى، مما يتفوق على تقنيات الأدب الأخرى على الرسوم البيانية الدلالية المصنوعة يدويا. نعرض أيضا أن استخدام الرسوم البيانية المحيطة بها أكثر من تلك المشروح يدويا ضرر بالإخراج. أخيرا، يشير تحليل مدى أهمية أنواع المعلومات المختلفة لعملية التلخيص إلى أن استخدام ميزات تحليل المعرفات لم يحسن جودة ملخص.
The amount of information available online can be overwhelming for users to digest, specially when dealing with other users' comments when making a decision about buying a product or service. In this context, opinion summarization systems are of great value, extracting important information from the texts and presenting them to the user in a more understandable manner. It is also known that the usage of semantic representations can benefit the quality of the generated summaries. This paper aims at developing opinion summarization methods based on Abstract Meaning Representation of texts in the Brazilian Portuguese language. Four different methods have been investigated, alongside some literature approaches. The results show that a Machine Learning-based method produced summaries of higher quality, outperforming other literature techniques on manually constructed semantic graphs. We also show that using parsed graphs over manually annotated ones harmed the output. Finally, an analysis of how important different types of information are for the summarization process suggests that using Sentiment Analysis features did not improve summary quality.
المراجع المستخدمة
https://aclanthology.org/
الملخص نقدم المحول الكمي (كيو تي)، نظام غير مؤظفي لتلخيص الرأي الاستخراجي.يستلهم كيو تي عن طريق السيارات الآلية المتناقلة الكمية، والتي نعدها لتلخيص الشعبية.يستخدم تفسير تجميع الفضاء الكمي وقواريل استخراج جديدة لاكتشاف الآراء الشعبية بين مئات من المر
ينتج العمل الأخير بشأن تلخيص الرأي ملخصات عامة بناء على مجموعة من مراجعات المدخلات وشعبية الآراء المعبر بها فيها.في هذه الورقة، نقترح نهج يسمح بتوليد ملخصات مخصصة بناء على استفسارات الجانب (E.G.، ووصف موقع وغرفة فندق).باستخدام مراجعة Corpus، نقوم بإن
Rouge هو متري تقييم واسع الاستخدام في تلخيص النص.ومع ذلك، فإنه غير مناسب لتقييم أنظمة تلخيص الجماع حيث تعتمد على التداخل المعجمي بين معيار الذهب والملخصات التي تم إنشاؤها.يصبح هذا القيد أكثر وضوحا للغات الشاقة مع المفردات الكبيرة جدا ونسب عالية النوع
على الرغم من أن نماذج التلخيص المحظورة حققت نتائج مثيرة للإعجاب في مهام تلخيص المستندات، فإن أدائها على نمذجة الحوار أقل مرضية بأقل قدر ممكن بسبب الأساليب النفطية والمتصلة لترميز الحوار.لمعالجة هذا السؤال، نقترح نموذجا نزايدا للنماذج القائمة على المح
في هذا البرنامج التعليمي، سنظهر أين نحن وأين سنكون في هؤلاء الباحثين المهتمين بهذا الموضوع.نقسم هذا البرنامج التعليمي في ثلاثة أجزاء، بما في ذلك تعدين الرأي المالي الخشبي، والتعدين الرأي المالي المحتلة الجميلة، والاتجاهات البحثية المحتملة.يبدأ هذا ال