في الوقت الحاضر، هناك الكثير من الإعلانات التي تختبئ كوظائف طبيعية أو مشاريع خبرة في وسائل التواصل الاجتماعي.هناك القليل من البحوث في الكشف عن الإعلانات على النصوص الصينية الماندرين.وهكذا تهدف هذه الورقة إلى التركيز على الكشف الإعلامي المخفي عن المشاركات عبر الإنترنت في تايوان ماندرين الصينية.لقد فحصنا سبعة ميزات سياقية بناء على نظريات لغوية في مستوى الخطاب.يمكن تجميع هذه الميزات إلى ثلاثة مخططات تحت بنية الكتابة العامة العامة.نفذت هذه الميزات هذه لتدريب نموذج برت متعدد المهام للكشف عن إعلانات.اقترحت النتائج أن ميزات لغوية محددة سيساعد في استخراج إعلانات.
Nowadays, there are a lot of advertisements hiding as normal posts or experience sharing in social media. There is little research of advertorial detection on Mandarin Chinese texts. This paper thus aimed to focus on hidden advertorial detection of online posts in Taiwan Mandarin Chinese. We inspected seven contextual features based on linguistic theories in discourse level. These features can be further grouped into three schemas under the general advertorial writing structure. We further implemented these features to train a multi-task BERT model to detect advertorials. The results suggested that specific linguistic features would help extract advertorials.
المراجع المستخدمة
https://aclanthology.org/
تعتمد منصات وسائل التواصل الاجتماعي عبر الإنترنت على نحو متزايد على تقنيات معالجة اللغة الطبيعية (NLP) للكشف عن محتوى مسيء على نطاق واسع من أجل تخفيف الأضرار التي يسببها لمستخدميها. ومع ذلك، فإن هذه التقنيات تعاني من مختلف تحيزات أخذ العينات والجمعية
غالبا ما تحتوي نصوص وسائل التواصل الاجتماعي مثل منشورات المدونة والتعليقات والتغريدات بلغات هجومية بما في ذلك تعليقات خطاب الكراهية العنصرية والهجمات الشخصية والتحرش الجنسي.لذلك اكتشاف الاستخدام غير المناسب للغة هو أهمية قصوى لسلامة المستخدمين وكذلك
السخرية عبارة عن تعبير لغوي يستخدم في كثير من الأحيان للتواصل مع عكس ما يقال، وعادة ما يكون شيئا غير سار للغاية بقصد الإهانة أو السخرية.الغموض الكامنة في التعبيرات الساخرة يجعل اكتشاف السخرية صعبة للغاية.في هذا العمل، نركز على الكشف عن السخرية في محا
تصبح الصحة العقلية أكثر اهتماما مؤخرا مؤخرا، والاكتئاب كونه مرض شائع جدا في الوقت الحاضر، ولكن أيضا اضطرابات أخرى مثل القلق أو الاضطرابات القهرية الهوس أو اضطرابات التغذية أو اضطرابات نقص الانتباه / اضطرابات نقص الانتباه / فرط النشاط. توفر كمية كبيرة
يمكن للكشف عن الموقف على وسائل التواصل الاجتماعي المساعدة في تحديد وفهم الأخبار أو التعليق المائل في الحياة اليومية.في هذا العمل، نقترح نموذجا جديدا للكشف عن موقف صفرية على Twitter يستخدم التعلم الخصم للتعميم عبر الموضوعات.ينص نموذجنا على الأداء الحد