ترغب بنشر مسار تعليمي؟ اضغط هنا

تكيف مجال الترجمة الآلية الهندية التيلجو باستخدام ترجمة المجال الخاصة بالترجمة

Domain Adaptation for Hindi-Telugu Machine Translation Using Domain Specific Back Translation

371   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نقدم نهجا جديدا لتكييف المجال في الجهاز العصبي الذي يهدف إلى تحسين جودة Thetranslation على نطاق جديد. إضافة مجالات جديدة هي مهمة عالية تحديا لبيانات الترجمة الآلية العصبية، يصبح أكثر عبادة منتشرةالمجالات الفنية مثل Chem-Istry والذكاء الاصطناعي بسبب مصطلحات Spe-Sicific، إلخ. نقترح أسلوب الترجمة الخلفي العجول Domainspecific والتي تنوع بيانات الأحادية المتوفرة والبيانات الاصطناعية العامة بطريقة مختلفة. هذا النهج يستخدم خارج الكلمات. النهجعام جدا ويمكن أن تقوم بالياف بأي زوج لغة لأي مجال.نقوم بإجراء تجاربنا على الكنديمان والذكاء الاصطناعي) من أجل اللغة الهندية والتيلجو في كل من direc-tions.وقد لوحظ أن استخدام البيانات الاصطناعية الاستخدام التي تم إنشاؤها بواسطة proposedalgorithm يحسن درجات بلو بشكل كبير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف قدان شرائح طويلة من أجل حماية السرية، نجد أن جودة NMT يمكن أن تستفيد كثيرا من هذا التكيف، وأنه يمكن الحصول على مزيد من المكاسب مع تقنية علامات بسيطة.
في هذه الورقة، نصف نظام ملكة جمالنا الذي شارك في مهمة ترجمة WMT21 الأخبار. شاركنا بشكل رئيسي في تقييم اتجاهات الترجمة الثلاثة لمهام الترجمة الإنجليزية واليابانية والإنجليزية. في النظم المقدمة، تعتبر في المقام الأول شبكات أوسع، وشبكات أعمق، والترميز ا لموضعي النسبي، والشبكات التنافعية الديناميكية من حيث هيكل النماذج، في حين أننا من حيث التدريب، حققنا في تكييف المجال المعزز للتناقض في التعلم، والتدريب والإشراف على الذات، والتحسين طرق التدريب التبديل الموضوعية. وفقا لنتائج التقييم النهائي، يمكن لشبكة أعمق وأوسع وأقوى تحسين أداء الترجمة بشكل عام، ومع ذلك يمكن أن تحسن طريقة توطين نطاق البيانات لدينا الأداء أكثر. بالإضافة إلى ذلك، وجدنا أن التبديل إلى استخدام هدفنا المقترح خلال المرحلة الفائقة باستخدام البيانات الصغيرة المرتبطة بالنطاق نسبيا يمكن أن يحسن بشكل فعال من استقرار تقارب النموذج وتحقيق الأداء الأمثل بشكل أفضل.
اكتسبت نهج الترجمة الآلية العصبية شعبية في الترجمة الآلية بسبب تحليل سياقها وقدرتها ومعالجتها لقضايا الاعتماد على المدى الطويل.لقد شاركنا في المهمة المشتركة WMT21 الخاصة بترجمة اللغة المماثلة على زوج التاميل التيلجو مع اسم الفريق: NILP-NITS.في هذه ال مهمة، استغلنا بيانات أحادية الأونلينغ عن طريق تضيير Word مسبقا في Transformer Model Necural Translation للتعامل مع قيود Corpus الموازية.لقد حقق نموذجنا تقييم ثنائي اللغة التقييم (بلو) 0.05، درجة التقييم البديهات بديهية سهلة اللغة (RIBES) في المرتبة (RIBES) من 24.80 ونتيجة معدل تحرير الترجمة من 97.24 لكل من Tamil-to-Telugu و Teluguترجمات التاميل على التوالي.
إن دمج طرائق الإدخال المتعددة في نظام الترجمة الآلي (MT) يكتسب شعبية بين الباحثين MT. على عكس مجموعة البيانات المتاحة للجمهور لمهام ترجمة الآلات متعددة الوسائط، حيث تكون التسميات التوضيحية أوصاف صورة قصيرة، توفر التعليق الأخبار وصفا أكثر تفصيلا لمحتو يات الصور. نتيجة لذلك، يتم العثور على العديد من الكيانات المسماة المتعلقة بالأشخاص المحددين والمواقع وما إلى ذلك. في هذه الورقة، يكتسبان مجموعة بيانات أخبار أحادية أحادية الأبعاد التي أبلغت باللغة الإنجليزية والهندية مقترنة بالصور لتوليد كوربوس موازية من اللغة الإنجليزية الهندية الاصطناعية. يستخدم Corpus الموازي لتدريب الترجمة الآلية العصبية باللغة الإنجليزية (NMT) ونظام MMT باللغة الإنجليزية من خلال دمج ميزة الصورة المقترنة مع Corpus الموازي المقابلة. نحن أيضا إجراء تحليل منهجي لتقييم أنظمة MT الإنجليزية-الهندية مع 1) المزيد من البيانات الاصطناعية و 2) عن طريق إضافة البيانات المترجمة إلى الوراء. يؤدي النتيجة لدينا إلى تحسن من حيث درجات BLEU لكل من أنظمة NMT (+8.05) و MMT (+11.03).
تعتبر هذه الورقة مشكلة تكيف المجال غير المدعومة من أجل الترجمة الآلية العصبية (NMT)، حيث نفترض الوصول إلى نص أحادي فقط إما في المصدر أو اللغة المستهدفة في المجال الجديد. نقترح طريقة اختيار البيانات عبر اللغات لاستخراج الجمل داخل المجال في جانب اللغة المفقودة من كوربوس أحادية الأجل عام كبيرة. تقوم طريقةنا المقترحة بتدريب طبقة تكيفية على رأس بيرتف متعدد اللغات من خلال التعلم المتعرج عن تعايز التمثيل بين المصدر واللغة المستهدفة. ثم يتيح ذلك تحويل قابلية تحويل المجال بين اللغات بطريقة طلقة صفرية. بمجرد اكتشاف البيانات داخل المجال من قبل المصنف، يتم بعد ذلك تكييف نموذج NMT بالمجال الجديد من خلال مهام الترجمة التعلم المشتركة ومهام التمييز بين المجال. نقيم طريقة اختيار بياناتنا عبر اللغات لدينا على NMT عبر خمسة مجالات متنوعة في ثلاث أزواج لغوية، وكذلك سيناريو في العالم الحقيقي للترجمة Covid-19. تظهر النتائج أن أسلوبنا المقترح تتفوق على خطوط خطوط خطوط اختيار الاختيار الأخرى تصل إلى +1.5 درجة بلو.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا