ترغب بنشر مسار تعليمي؟ اضغط هنا

ملكة جمال @ WMT21: تكيف مجال التعلم المعزز بالتعلم في الترجمة الآلية العصبية

MiSS@WMT21: Contrastive Learning-reinforced Domain Adaptation in Neural Machine Translation

511   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نصف نظام ملكة جمالنا الذي شارك في مهمة ترجمة WMT21 الأخبار. شاركنا بشكل رئيسي في تقييم اتجاهات الترجمة الثلاثة لمهام الترجمة الإنجليزية واليابانية والإنجليزية. في النظم المقدمة، تعتبر في المقام الأول شبكات أوسع، وشبكات أعمق، والترميز الموضعي النسبي، والشبكات التنافعية الديناميكية من حيث هيكل النماذج، في حين أننا من حيث التدريب، حققنا في تكييف المجال المعزز للتناقض في التعلم، والتدريب والإشراف على الذات، والتحسين طرق التدريب التبديل الموضوعية. وفقا لنتائج التقييم النهائي، يمكن لشبكة أعمق وأوسع وأقوى تحسين أداء الترجمة بشكل عام، ومع ذلك يمكن أن تحسن طريقة توطين نطاق البيانات لدينا الأداء أكثر. بالإضافة إلى ذلك، وجدنا أن التبديل إلى استخدام هدفنا المقترح خلال المرحلة الفائقة باستخدام البيانات الصغيرة المرتبطة بالنطاق نسبيا يمكن أن يحسن بشكل فعال من استقرار تقارب النموذج وتحقيق الأداء الأمثل بشكل أفضل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة شركة Tone Communication Global Co.، Ltd. لتقديم مهمة ترجمة الأخبار المشتركة WMT21.نشارك في ست اتجاهات: إنجليزي منادر إلى / من الهوسا، الهندية من / إلى / من البنغالية وزولو إلى / من Xhosa.أنظمتنا المقدمة غير مقيدة والتركيز على الترجمة م تعددة اللغات أوديل، الترجمة إلى الأمام.نحن نطبق أيضا قواعد ونموذج اللغة لتصفية أحكام أحادية الاتجاه والجمل الاصطناعية.
في هذه الورقة، نقدم نهجا جديدا لتكييف المجال في الجهاز العصبي الذي يهدف إلى تحسين جودة Thetranslation على نطاق جديد. إضافة مجالات جديدة هي مهمة عالية تحديا لبيانات الترجمة الآلية العصبية، يصبح أكثر عبادة منتشرةالمجالات الفنية مثل Chem-Istry والذكاء ا لاصطناعي بسبب مصطلحات Spe-Sicific، إلخ. نقترح أسلوب الترجمة الخلفي العجول Domainspecific والتي تنوع بيانات الأحادية المتوفرة والبيانات الاصطناعية العامة بطريقة مختلفة. هذا النهج يستخدم خارج الكلمات. النهجعام جدا ويمكن أن تقوم بالياف بأي زوج لغة لأي مجال.نقوم بإجراء تجاربنا على الكنديمان والذكاء الاصطناعي) من أجل اللغة الهندية والتيلجو في كل من direc-tions.وقد لوحظ أن استخدام البيانات الاصطناعية الاستخدام التي تم إنشاؤها بواسطة proposedalgorithm يحسن درجات بلو بشكل كبير.
تعتبر هذه الورقة مشكلة تكيف المجال غير المدعومة من أجل الترجمة الآلية العصبية (NMT)، حيث نفترض الوصول إلى نص أحادي فقط إما في المصدر أو اللغة المستهدفة في المجال الجديد. نقترح طريقة اختيار البيانات عبر اللغات لاستخراج الجمل داخل المجال في جانب اللغة المفقودة من كوربوس أحادية الأجل عام كبيرة. تقوم طريقةنا المقترحة بتدريب طبقة تكيفية على رأس بيرتف متعدد اللغات من خلال التعلم المتعرج عن تعايز التمثيل بين المصدر واللغة المستهدفة. ثم يتيح ذلك تحويل قابلية تحويل المجال بين اللغات بطريقة طلقة صفرية. بمجرد اكتشاف البيانات داخل المجال من قبل المصنف، يتم بعد ذلك تكييف نموذج NMT بالمجال الجديد من خلال مهام الترجمة التعلم المشتركة ومهام التمييز بين المجال. نقيم طريقة اختيار بياناتنا عبر اللغات لدينا على NMT عبر خمسة مجالات متنوعة في ثلاث أزواج لغوية، وكذلك سيناريو في العالم الحقيقي للترجمة Covid-19. تظهر النتائج أن أسلوبنا المقترح تتفوق على خطوط خطوط خطوط اختيار الاختيار الأخرى تصل إلى +1.5 درجة بلو.
نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف قدان شرائح طويلة من أجل حماية السرية، نجد أن جودة NMT يمكن أن تستفيد كثيرا من هذا التكيف، وأنه يمكن الحصول على مزيد من المكاسب مع تقنية علامات بسيطة.
تحتاج أنظمة الإنتاج NMT عادة إلى خدمة مجالات المتخصصة التي لا تغطيها كوربيا كبيرة ومتاحة بسهولة بشكل مناسب.ونتيجة لذلك، غالبا ما يكون الممارسون نماذج غرضا عاما نماذج عامة على كل من المجالات التي يلبيها منظمةها.ومع ذلك، يمكن أن يصبح عدد المجالات كبيرا ، مما يتجمع مع عدد اللغات التي تحتاج إلى خدمة يمكن أن تؤدي إلى وضع أسطول غير قابل للحل من النماذج والمحافظة عليها.نقترح علامات متعددة الأبعاد، وهي طريقة لضبط نموذج NMT واحد على عدة مجالات في وقت واحد، وبالتالي تقليل تكاليف التطوير والصيانة بشكل كبير.نحن ندير تجارب حيث يقارن نموذج واحد MDT بشكل إيجابي لمجموعة من نماذج SOTA متخصصة، حتى عند تقييمها على المجال كانت تلك الأساس التي تم ضبطها بشكل جيد.إلى جانب بلو، نبلغ عن نتائج التقييم البشري.تعيش نماذج MDT الآن في Booking.com، مما يؤدي إلى تشغيل محرك MT الذي يخدم ملايين الترجمات يوميا في أكثر من 40 لغة مختلفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا