ترغب بنشر مسار تعليمي؟ اضغط هنا

الحفاظ على التقاطع بين النماذج المدربة مسبقا عبر التعلم المستمر

Preserving Cross-Linguality of Pre-trained Models via Continual Learning

333   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في الآونة الأخيرة، تؤدي نماذج اللغات المدربة مسبقا مؤخرا (على سبيل المثال، بيرت متعددة اللغات) إلى المهام المتقاطعة المصب هي نتائج واعدة.ومع ذلك، فإن عملية التوصيل الدقيقة تغيرت حتما معلمات النموذج المدرب مسبقا ويضعف قدرتها على اللغات، مما يؤدي إلى أداء فرعي الأمثل.لتخفيف هذه المشكلة، نستفيد من التعلم المستمر للحفاظ على قدرة اللغة الأصلية المتبادلة النموذجية المدربة مسبقا عندما نتنزهها إلى مهام المصب.توضح النتيجة التجريبية أن أساليبنا الراقية الخاصة بنا يمكن أن تحافظ بشكل أفضل على القدرة المتبادلة النموذجية المدربة مسبقا في مهمة استرجاع الجملة.حقق طرقنا أيضا أداء أفضل من خطوط الأساس الأخرى ذات الصقل الرصيف على علامة العلامة بين العلامات بين الكلام الصفرية عبر اللغات ومهام التعرف على الكيان المسماة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

هل يمكن لصق Bert مدربة مسبقا بلغة واحدة و GPT لآخر لترجمة النصوص؟يؤدي التدريب للإشراف على الذات باستخدام بيانات أحادية الأونلينغ فقط إلى نجاح نماذج اللغة المدربة مسبقا (ملثمين) في العديد من مهام NLP.ومع ذلك، فإن ربط بيرت مباشرة كتشفير و GPT حيث أن وح دة فك ترميز يمكن أن يكون تحديا في الترجمة الآلية، وفصول النماذج التي تشبه gpt إلى مكون متقاطع مكون مطلوب في فك تشفير SEQ2SEQ.في هذه الورقة، نقترح Graformer إلى الكسب غير المشروع نماذج اللغة المدربة مسبقا (ملثمين) للترجمة الآلية.مع بيانات أحادية الأبعاد لبيانات التدريب المسبق والتوازي لتدريب تطعيم، نستفيد إلى حد ما من استخدام كلا النوعين من البيانات.تظهر التجارب في 60 اتجاهات أن طريقتنا تحقق متوسط التحسينات من 5.8 بلو في X2EN و 2.9 بلو في اتجاهات EN2X مقارنة مع المحول متعدد اللغات من نفس الحجم.
نقدم طريقتان رواية غير منشأة لإزالة السمية في النص.تجمع أهميتنا الأولى بين الأفكار الحديثة: (1) إرشادات عملية التوليد مع نماذج اللغة الشرطية النمطية الصغيرة و (2) استخدام نماذج إعادة الصياغة لأداء نقل النمط.نحن نستخدم أداء أداء جيدا تسترشد نماذج لغة مدربة على الطراز للحفاظ على محتوى النص وإزالة السمية.تستخدم الطريقة الثانية لدينا بيرت لاستبدال الكلمات السامة مع مرادفاتها غير الهجومية.نحن نجعل الطريقة أكثر مرونة من خلال تمكين بيرت لتحل محل الرموز القناع مع عدد متغير من الكلمات.أخيرا، نقدم أول دراسة مقارنة واسعة النطاق لنماذج نقل النمط في مهمة إزالة السمية.نقارن نماذجنا بعدد من الطرق لنقل النمط.يتم تقييم النماذج بطريقة خالية من المرجع باستخدام مزيج من مقاييس نقل النمط غير المدقق.كلتا الطريقتين نقترح أن تسفر عن نتائج سوتا الجديدة.
تم حل معايير المنطق المنطقي إلى حد كبير عن طريق نماذج لغة ضبط دقيقة. الجانب السلبي هو أن الضبط الدقيق قد يتسبب في طرح نماذج إلى البيانات الخاصة بمهام المهام وبالتالي انسوا معرفتهم المكتسبة خلال التدريب المسبق. تعمل الأعمال الحديثة فقط على اقتراح تحدي ثات نموذجية خفيفة الوزن حيث قد تمتلك النماذج بالفعل معرفة مفيدة من الخبرة السابقة، لكن التحدي لا يزال في فهم الأجزاء وإلى أي مدى يجب أن يتم تنقيح النماذج بمهمة معينة. في هذه الورقة، نقوم بالتحقيق في نماذج تتعلم من مجموعات بيانات منطق المنطقية. نقيس تأثير ثلاث طرق تكييف مختلفة عن تعميم ودقة النماذج. تظهر تجاربنا مع نماذجين أن الضبط الدقيق يؤدي بشكل أفضل، من خلال تعلم كل من المحتوى والهيكل المهمة، ولكنه يعاني من التجمع المحدود والمحدود لإجابات جديدة. نلاحظ أن طرق التكيف البديلة مثل ضبط البادئة لها دقة قابلة للمقارنة، ولكن تعميم أفضل من الإجابات غير المرئية وهي أكثر قوة لانشقاقات الخصومة.
تحقق هذه الورقة فيما إذا كانت قوة النماذج المدربة مسبقا على البيانات النصية، مثل Bert، يمكن نقلها إلى تطبيقات تصنيف تسلسل الرمز المميز.للتحقق من قابلية نقل النماذج المدربة مسبقا، نقوم باختبار النماذج المدربة مسبقا على مهام تصنيف النص مع معاني عدم تطا بق الرموز، وبيانات تصنيف تسلسل التسلسل غير المدرسي في العالم الحقيقي، بما في ذلك الحمض الأميني والحمض النووي والموسيقى.نجد أنه حتى على البيانات غير النصية، تتخطى النماذج المدربة مسبقا على النص بشكل أسرع، وأداء أفضل من النماذج ذات الادعاء بشكل عشوائي، وأسوأ قليلا فقط من النماذج باستخدام المعرفة الخاصة بمهام المهام.نجد أيضا أن تمثيل النماذج المدربة مسبقا للنصوص وغير النصية تشترك في أوجه التشابه غير التافهة.
تقترح هذه الورقة تقنية لإضافة مصدر جديد أو لغة مستهدفة إلى نموذج NMT متعدد اللغات الحالي دون إعادة تدريبه في المجموعة الأولية للغات.وهي تتألف في استبدال المفردات المشتركة مع المفردات الصغيرة الخاصة باللغة ولقلها تضمين المدينات الجديدة على البيانات ال متوازية باللغة الجديدة.قد يتم تدريب بعض المكونات الإضافية الخاصة باللغة على تحسين الأداء (مثل طبقات المحولات أو وحدات المحولات).لأن معلمات النموذج الأصلي لا يتم تعديلها، فإن أدائها على اللغات الأولية لا تتحلل.نظهر على مجموعتين من التجارب (نطاق صغير على محادثات تيد، واسعة النطاق على الباراسراول) أن هذا النهج ينفذ كذلك أو أفضل كمادة أكثر تكلفة؛وأنه يحتوي على أداء ممتازة للصفر: التدريب على البيانات المرن الإنجليزية يكفي للترجمة بين اللغة الجديدة وأي من اللغات الأولية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا