ترغب بنشر مسار تعليمي؟ اضغط هنا

MMTL: التعلم Meta متعدد المهام لتحليل المعنويات الفئة في الفئة

MMTL: The Meta Multi-Task Learning for Aspect Category Sentiment Analysis

400   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تحليل المعنويات الفئة في الأساس (ACSA)، والتي تهدف إلى تحديد أساور المشاعر المحبوبة من فئات الارتفاع المناقشات في مراجعات المستخدمين. ACSA صعبة ومكلفة عند إجراءها في تطبيقات عالمية حقيقية، والتي ترجع بشكل رئيسي إلى الأسباب التالية: 1.) وعلم بيانات ACSA الفاخرة غالبا ما تكون كثيفة العمالة. 2.) سيتم تحديث فئات الارتفاع بشكل ديناميكي وتعديلها بتطوير سيناريوهات التطبيق، مما يعني أن البيانات يجب أن تنعيم بشكل متكرر. 3.) نظرا لزيادة فئات الارتفاع، يجب إعادة تدريب النموذج بشكل متكرر للتكيف السريع مع بيانات فئة الجانب الإضافية حديثا. للتغلب على المشكلات المذكورة أعلاه، نقدم نهجا جديدا للتعلم من التعلم متعددة المهام (MMTL)، هذه المهام ACSA بمثابة مشكلة في التعلم التلوي (أي فيما يتعلق بمشاكل تصنيف قطباء القطبية في الفئة في الفئة مثل المهام التدريبية المختلفة لل meta - التعلم) لتعلم تهيئة مثالية وقابلة للتخصيرة نموذج التعلم متعدد المهام التي يمكن تكييفها مع مهام ACSA الجديدة بكفاءة وفعالية. تشير نتائج التجربة إلى أن النهج المقترح يتفوق بشكل كبير على النموذج الأساسي القائم على المحولات القائم على المحولات القوية مسبقا، خاصة، في حالة وجود بيانات تدريبية على غرامة أقل وصفها.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

اجتذبت تحليل المعنويات الفئة في الآراء اهتمام الأبحاث المتزايد.تستخدم الأساليب المهيمنة نماذج لغة مدربة مسبقا عن طريق تعلم تمثيلات فعالة من الفئة من الفئة، وإضافة طبقات إخراج محددة إلى تمثيلها المدرب مسبقا.نحن نعتبر طريقة أكثر مباشرة لاستخدام نماذج ا للغة المدربة مسبقا، من خلال إلقاء مهام ACSA في مهام توليد اللغة الطبيعية، باستخدام جمل اللغة الطبيعية لتمثيل الإخراج.تتيح لطريقتنا استخدام المزيد من الاستخدام المباشر للمعرفة المدربة مسبقا في طرازات اللغة SEQ2SEQ من خلال إعداد المهام مباشرة أثناء التدريب المسبق.تشير التجارب في العديد من المعايير إلى أن طريقتنا تمنح أفضل النتائج المبلغ عنها، حيث توجد مزايا كبيرة في إعدادات قليلة وإعدادات طلقة صفرية.
تشكل بروز أجهزة اللغة التصويرية، مثل السخرية والمفارقة، تحديات خطيرة لتحليل المعنويات العربية (SA).في حين أن أعمال البحث السابقة تعامل معها واكتشاف السخرية بشكل منفصل، تقدم هذه الورقة نموذجا للتعلم العميق المتعدد للمكملات المتعددة الإنهائية (MTL)، مم ا يتيح تفاعل المعرفة بين المهامتين.تتكون بنية MTL Model الخاصة بنا من تمثيل ترميز ثنائي الاتجاه من طراز المحولات (Bert)، وحدة تفاعل انتباه متعددة المهام، واثنين من مصنفين المهامين.تظهر النتائج الإجمالية التي تم الحصول عليها أن نموذجنا المقترح تتفوق على نظرائه المهمة الواحدة و MTL على كل من المهاجمة والشعور الفرعي للكشف عن المعنويات.
في هذه الورقة، يمكننا التحقيق في مهمة تحليل المشاعر الفئة من الفئة (ACSA) من منظور جديد من خلال استكشاف بناء الرسوم البيانية المدرجة في جوانب التجريبية على أساس المعرفة الخارجية. وهذا يعني أننا لم نعد النزود حول كيفية البحث بشغف على أدلة المشاعر للجو انب الخشنة من السياق، ولكن كيف تفضل أن تجد الكلمات ذات الصلة بشدة إلى الجوانب في السياق وتحديد أهميتها بناء على قاعدة المعرفة العامة وبعد وبهذه الطريقة، يمكن تتبع أدلة المعنويات السياقية بشكل صريح في ACSA للجوانب في ضوء هذه الكلمات المتعلقة بالجانب. لتكون محددة، نعتبر أولا كل جانب كحوري لاستخلاص الكلمات التي تدرك الجانب مرتبطة بشدة بالجانب من معرفة المناولة العاطفية الخارجية. بعد ذلك، نوظف توزيع بيتا لاستكشاف الوزن على دراية الجسدة، والذي يعكس أهمية الجانب، لكل كلمة على أساس جوانب. بعد ذلك، يتم تقديم الكلمات التي يدركها الجانب كضعف من جانب المحبوس الخشبي لإنشاء رسوم بيانية لاستفادة من تبعيات المعنويات السياقية ذات الصلة بالجانب في ACSA. تظهر التجارب في 6 مجموعات بيانات معيار أن نهجنا تتفوق بشكل كبير على أساليب خط الأساس الحديثة.
اجتذبت تحليل المعنويات الاهتمام المتزايد في التجارة الإلكترونية. تعتبر أسابير المشاعر الأساسيين لمراجعات المستخدمين ذات قيمة كبيرة لذكاء الأعمال. تحليل المعنويات الفئة في الأساس (ACSA) ومراجعة التنبؤ بالتصنيف (RP) هما مهامان أساسيان للكشف عن أسطاطات المشاعر الدقيقة إلى الخشنة. ترتبط ACSA و RP بشكل كبير وعادة ما تستخدم بشكل مشترك في سيناريوهات التجارة الإلكترونية في العالم الحقيقي. في حين يتم بناء معظم مجموعات البيانات العامة ل ACSA و RP بشكل منفصل، مما قد يحد من استغلالهما الإضافي لكلتا المهام. لمعالجة المشكلة والبحثات المتقدمة ذات الصلة، نقدم مراجعة مطعم صيني واسع النطاق في اسرع وقت ممكن في اسرع وقت ممكن في اسرع وقت ممكن 46، 730 مراجعات أصلية من نظام التجارة الإلكترونية الرائدة عبر الإنترنت (O2O) في الصين. إلى جانب تصنيف مقياس من 5 نجوم، يتم تفجيح كل مراجعة يدويا وفقا لأقطاب المعنويات نحو 18 فئة من الارتفاع المحدد مسبقا. نأمل أن يتم إلقاء الإفراج عن DataSet على إلقاء بعض الضوء على مجال تحليل المعنويات. علاوة على ذلك، نقترح نموذج مشترك بديهي ولكن فعال ل ACSA و RP. توضح النتائج التجريبية أن النموذج المشترك تفوق خطوط الأساس الحديثة في كلا المهام.
يتنبأ تحليل المعنويات المستندة إلى جانب الجسيم (ABASA) بقبولية المعنويات نحو مصطلح معين معين في جملة، وهي مهمة مهمة في تطبيقات العالم الحقيقي. لأداء ABSA، يلزم النموذج المدرب أن يكون له فهم جيد للمعلومات السياقية، وخاصة الأنماط الخاصة التي تشير إلى ق طبية المعنويات. ومع ذلك، تختلف هذه الأنماط عادة في جمل مختلفة، خاصة عندما تأتي الجمل من مصادر مختلفة (المجالات)، مما يجعل ABSA لا يزال صعبا للغاية. على الرغم من الجمع بين البيانات المسمى عبر مصادر مختلفة (المجالات) هو حل واعد لمعالجة التحدي، في التطبيقات العملية، عادة ما يتم تخزين هذه البيانات المسمى في مواقع مختلفة وقد لا يمكن الوصول إليها لبعضها البعض بسبب الخصوصية أو المخاوف القانونية (مثل البيانات مملوكة لشركات مختلفة). لمعالجة هذه المشكلة واستخدم أفضل استخدام لجميع البيانات المسمى، نقترح نموذج ABSA الجديد مع التعلم الفيدرالي (FL) المعتمد للتغلب على قيود عزل البيانات وإدماج ذاكرة الموضوع (TM) المقترح اتخاذ حالات البيانات من مصادر متنوعة (المجالات) في الاعتبار. خاصة، تهدف TM إلى تحديد مصادر البيانات المختلفة المعزولة بسبب عدم إمكانية الوصول إلى البيانات من خلال توفير معلومات فئة مفيدة للتنبؤات المحلية. توضح النتائج التجريبية على بيئة محاكاة لثلاثة عقد مع ثلاث عقود فعالية نهجنا، حيث تتفوق TM-FL على خطوط أساس مختلفة بما في ذلك بعض أطر FL مصممة جيدا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا