ترغب بنشر مسار تعليمي؟ اضغط هنا

نموذج عميق متعدد المهام لتحليل السخرية وتحليل المعنويات باللغة العربية

Deep Multi-Task Model for Sarcasm Detection and Sentiment Analysis in Arabic Language

767   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تشكل بروز أجهزة اللغة التصويرية، مثل السخرية والمفارقة، تحديات خطيرة لتحليل المعنويات العربية (SA).في حين أن أعمال البحث السابقة تعامل معها واكتشاف السخرية بشكل منفصل، تقدم هذه الورقة نموذجا للتعلم العميق المتعدد للمكملات المتعددة الإنهائية (MTL)، مما يتيح تفاعل المعرفة بين المهامتين.تتكون بنية MTL Model الخاصة بنا من تمثيل ترميز ثنائي الاتجاه من طراز المحولات (Bert)، وحدة تفاعل انتباه متعددة المهام، واثنين من مصنفين المهامين.تظهر النتائج الإجمالية التي تم الحصول عليها أن نموذجنا المقترح تتفوق على نظرائه المهمة الواحدة و MTL على كل من المهاجمة والشعور الفرعي للكشف عن المعنويات.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تحليل السخرية وتحليل المعنويات هي مهام مهمة في فهم اللغة الطبيعية.السخرية هي نوع من التعبير حيث يتم تقليد قطبية المعنويات لعامل التدخل.في هذه الدراسة، استغلنا هذه العلاقة لتعزيز كلتا المهام من خلال اقتراح نهج تعليمي متعدد المهام باستخدام مزيج من الأش رطة الثابتة والسياقة.حقق نظامنا المقترح أفضل نتيجة في فرعية الكشف عن السخرية.
وصفنا نظامنا المقدم لهذه المهمة المشتركة 2021 بشأن السخرية والكشف عن المعنويات باللغة العربية (أبو فرحة وآخرون، 2021).لقد تناولنا كل من المجموعات الفرعية، وهما اكتشاف السخرية (الفرعية 1) وتحليل المعرفات (SubTask 2).استخدمنا نماذج تمثيل نصية محكومة لل حالة من بين الفنون وتصنفها بشكل جيد وفقا لمهمة المصب في متناول اليد.كهدودي أول، استخدمنا بيرت متعددة اللغات من Google ثم المتغيرات العربية الأخرى: أرابيرت وأشرر وماربيرت.وجدت النتائج تظهر أن Marbert تفوقت على جميع النماذج المذكورة مسبقا بشكل عام، إما على التراكب الفرعي 1 أو Subtask 2.
تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات وم هام الكشف عن السخرية التي تم تقديمها كجزء من مهمة مشتركة من قبل أبو فرحة وآخرون. (2021). نقوم بضبط نماذج المحولات الحالية المحولات الحالية لاحتياجاتنا. بالإضافة إلى ذلك، نستخدم مجموعة متنوعة من تقنيات التعلم الآلي مثل أخذ العينات الأولية والتكبير والتعبئة والتغليف واستخدام ميزات META لتحسين أداء النماذج. نحن نحقق درجة F1 من 0.75 على مشكلة تصنيف المعنويات حيث يتم حساب درجة F1 على الفصول الإيجابية والسلبية (لا يتم أخذ الفصل المحايد في الاعتبار). نحن نحقق درجة F1 من 0.66 فوق مشكلة الكشف عن السخرية حيث يتم حساب درجة F1 عبر الفئة الساخرة فقط. في كلتا الحالتين، يتم تقييم النتائج المذكورة أعلاه على Arsarcasm-V2 - مجموعة بيانات ممتدة من Arsarcasm (Farha و Magdy، 2020) تم تقديمها كجزء من المهمة المشتركة. هذا يعكس تحسنا لتحقيق أحدث النتائج في كلتا المهام.
السخرية هي واحدة من التحديات الرئيسية لأنظمة تحليل المعنويات بسبب استخدام الصياغة غير المباشرة الضمنية للتعبير عن الآراء، وخاصة باللغة العربية.تقدم هذه الورقة النظام الذي قدمناه إلى المهمة الكشف عن السخرية والشاحنات الخاصة بمهمة WANLP-2021 القادرة عل ى التعامل مع كل من المهارات الفرعية.نقوم أولا بإجراء ضبط جيد على نوعين من نماذج اللغة المدربة مسبقا (PLMS) مع استراتيجيات تدريب مختلفة.ثم يتم تطبيق آلية تكديس فعالة على رأس Plms المصنفات الدقيقة للحصول على التنبؤ النهائي.النتائج التجريبية على DataSet Arsarcasm-V2 تظهر فعالية طريقتنا ونحن نحتل المرتبة الثالثة والثانية للحصول على التراكب الفرعي 1 و 2.
الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام ا لفرعية لورشة معالجة اللغات الطبيعية العربية السادسة (WANLP)؛تحليل السخرية وتحليل المعنويات.المنهجيات الخاصة بنا مدفوعة بفرضية أن التغريدات ذات الشعور السلبي والثغرات السلبية مع محتوى السخرية من غير المرجح أن يكون لها محتوى مسيء، وبالتالي، تؤدي إلى ضبط طراز التصنيف باستخدام كوربوس كبيرة من اللغة المسيئة، عملية التعلم للنموذج للكشف بشكل فعالالمعنويات ومحتويات السخرية.توضح النتائج فعالية نهجنا لمهمة الكشف عن السخرية على مهمة تحليل المعنويات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا