ترغب بنشر مسار تعليمي؟ اضغط هنا

UR في مهمة Semeval-2021 12: على التعليقات التوضيحية للحشد؛التعلم مع خلافات لتحسين الحقيقة الحشد

UOR at SemEval-2021 Task 12: On Crowd Annotations; Learning with Disagreements to optimise crowd truth

204   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم استخدام Growdsourcing بشكل مجيئي لتعليق مجموعات هائلة من البيانات.ومع ذلك، فإن العقبات الرئيسية التي تحول دون استخدام ملصقات من مصادر الحموشة هي ضوضاء وأخطاء من التعليقات الشرحية غير الخبراء.في هذا العمل، يقترح مقارنتين تتعامل مع الضوضاء والأخطاء في ملصقات الحشد.يستخدم النهج الأول تقليل الحد الأدنى على علم الحدة (SAM)، وهي تقنية التحسين بقوة بالملصقات الصاخبة.ينفد النهج الآخر على أن طبقة شبكة عصبية تدعى SoftMax-Crowdlayer مصممة خصيصا للتعلم من التعليقات التوضيحية من الحشد.وفقا للنتائج، يمكن للنهج المقترحة تحسين أداء نموذج الشبكة المتبقية الواسعة ونموذج التصور متعدد الطبقات المطبقة على مجموعات بيانات المصادر في الحشد في مجال معالجة الصور.كما أنه يحتوي على نتائج مماثلة ومقارنة مع تقنية التصويت الأغلبية عند تطبيقها على مجال البيانات المتسلسل حيث يتم استخدام تمثيلات التشفير الثنائية من المحولات (Bert) كطراز أساسي في كلا الحالتين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

الخلاف بين المبرمجين هو في كل مكان في جميع مجموعات البيانات المشروحة بأحكام بشرية في كل من معالجة اللغة الطبيعية ورؤية الكمبيوتر.ومع ذلك، تفترض معظم أساليب تعلم الآلات الأكثر إشرافا أن التفسير المفضل الوحيد موجود لكل عنصر، وهو في أحسن الأحوال مثالية. كان الهدف من مهمة Semeval-2021 المشتركة بشأن التعلم مع الخلافات (LE-WI-I-DI) هو توفير إطار اختبار موحد لأساليب التعلم من البيانات التي تحتوي على شروح متعددة وربما متناقضة تغطي مجموعات البيانات الأكثر شهرة التي تحتوي على معلومات حول الخلافاتتفسير اللغة وتصنيف الصور.في هذه الورقة وصفنا المهمة المشتركة ونتائجها.
تصف هذه الورقة نظام مقدم من فريق Biggreen إلى LCP 2021 للتنبؤ بالتعقيد المعجمي للكلمات الإنجليزية في سياق معين.نحن نكرب نموذجا يعتمد على الهندسة مع نموذج شبكة عصبي عميق تأسست على بيرتف.بينما ينفذ بيرت نفسها بشكل تنافسي، فإن نموذجنا القائم على الهندسة يساعد في الحالات القصوى، على سبيل المثال.فصل حالات الصعوبة السهلة والمحايدة.تضم ميزاتنا المصنوعة يدويا اتساعا من التدابير الصوفية المعجمية والدلية والمعنية والرواية.تقدم تصورات خرائط بيرت اهتماما نظرة ثاقبة للميزات المحتملة التي قد تتعلمها نماذج المحولات عند ضبطها من أجل تنبؤ التعقيد المعجمي.تنقيح تنبؤاتنا المعقولة بشكل معقول بالنسبة للكلمة الفرعية الواحدة، ونظهر كيف يمكن تسخيرها لأداء الاستاحا الفرعي للتعبير المتعدد الآن.
من بين المهام التي تحفزها انتشار المعلومات الخاطئة، فإن اكتشاف الدعاية تحديا بشكل خاص بسبب عجز التعليقات التوضيحية الدقيقة الدقيقة اللازمة لتدريب نماذج التعلم الآلي.هنا نظهر كيف يمكن الاستفادة من البيانات من المهام الأخرى ذات الصلة، بما في ذلك تقييم المصداقية، في إطار التعلم متعدد المهام (MTL) لتسريع عملية التدريب.وتحقيقا لهذه الغاية، نقوم بتصميم نموذج يستند إلى بيرت مع طبقات إخراج متعددة، وتدريبه في العديد من سيناريوهات MTL وأداء التقييم ضد معيار الذهب السائم.
التعقيد المعجمي يلعب دورا مهما في فهم القراءة.لا يمكن استخدام تنبؤ التعقيد المعجمي (LCP) كجزء من أنظمة التبسيط المعجمية، ولكن أيضا كتطبيق مستقل لمساعدة الأشخاص على قراءة أفضل.تقدم هذه الورقة النظام الفائز الذي قدمناه إلى مهمة LCP المشتركة في Semeval 2021 القادرة على التعامل مع كل من المهام الفرعية.نقوم أولا بإجراء ضبط جيد على أرقام نماذج اللغة المدربة مسبقا (PLMS) مع العديد من أنواع التشنجات المختلفة واستراتيجيات التدريب المختلفة مثل وضع العلامات الزائفة والبيانات.ثم يتم تطبيق آلية تكديس فعالة على رأس Plms المصنفات الدقيقة للحصول على التنبؤ النهائي.تظهر النتائج التجريبية على مجموعة البيانات المعقدة صحة طريقتنا ونحن رتب أولا والثاني للمضمون الفرعي 2 و 1.
أصبح الكشف عن الفكاهة موضوع اهتمام بالعديد من فرق البحث، وخاصة المشاركين في الدراسات الاجتماعية والنفسية، بهدف الكشف عن الفكاهة والأشجار السكانية المستهدفة (مثل مجتمع، مدينة، أي بلد، موظفوشركة معينة).قامت معظم الدراسات الحالية بصياغة مشكلة الكشف عن ا لفكاهة باعتبارها مهمة تصنيف ثنائية، بينما تدور حول تعلم شعور الفكاهة من خلال تقييم درجاتها المختلفة.في هذه الورقة، نقترح نموذج التعلم العميق متعدد الإنهاء (MTL) للكشف عن الفكاهة والجريمة.وهي تتألف من ترميز محول مدرب مسبقا وطبقات اهتمام خاص بمهام المهام.يتم تدريب النموذج باستخدام وزن خسارة عدم اليقين MTL للجمع بين جميع الوظائف الموضوعية ذات المهام الفرعية.يتناول نموذج MTL الخاص بنا جميع المهام الفرعية لمهمة Semeval-2021-7 في نظام التعلم العميق في نهاية واحد ويظهر نتائج واعدة للغاية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا