أصبح الكشف عن الفكاهة موضوع اهتمام بالعديد من فرق البحث، وخاصة المشاركين في الدراسات الاجتماعية والنفسية، بهدف الكشف عن الفكاهة والأشجار السكانية المستهدفة (مثل مجتمع، مدينة، أي بلد، موظفوشركة معينة).قامت معظم الدراسات الحالية بصياغة مشكلة الكشف عن الفكاهة باعتبارها مهمة تصنيف ثنائية، بينما تدور حول تعلم شعور الفكاهة من خلال تقييم درجاتها المختلفة.في هذه الورقة، نقترح نموذج التعلم العميق متعدد الإنهاء (MTL) للكشف عن الفكاهة والجريمة.وهي تتألف من ترميز محول مدرب مسبقا وطبقات اهتمام خاص بمهام المهام.يتم تدريب النموذج باستخدام وزن خسارة عدم اليقين MTL للجمع بين جميع الوظائف الموضوعية ذات المهام الفرعية.يتناول نموذج MTL الخاص بنا جميع المهام الفرعية لمهمة Semeval-2021-7 في نظام التعلم العميق في نهاية واحد ويظهر نتائج واعدة للغاية.
Humor detection has become a topic of interest for several research teams, especially those involved in socio-psychological studies, with the aim to detect the humor and the temper of a targeted population (e.g. a community, a city, a country, the employees of a given company). Most of the existing studies have formulated the humor detection problem as a binary classification task, whereas it revolves around learning the sense of humor by evaluating its different degrees. In this paper, we propose an end-to-end deep Multi-Task Learning (MTL) model to detect and rate humor and offense. It consists of a pre-trained transformer encoder and task-specific attention layers. The model is trained using MTL uncertainty loss weighting to adaptively combine all sub-tasks objective functions. Our MTL model tackles all sub-tasks of the SemEval-2021 Task-7 in one end-to-end deep learning system and shows very promising results.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة نظامنا المشارك في المهمة 7 من Semeval-2021: الكشف عن الفكاهة والجريمة.تم تصميم المهمة للكشف عن الفكاهة والجريمة التي تتأثر بالعوامل الذاتية.من أجل الحصول على معلومات دلالية من كمية كبيرة من البيانات غير المسبقة، طبقنا نماذج اللغة المدر
توضح هذه الورقة مساهمتنا في مهمة Semeval-2021: الكشف عن الفكاهة وتصنيف المهمة وتصنيف المهمة الخاصة بهذه المهام الفرعية، المهمة الفرعية 1 ومهمة فرعية 2. من بينها، المهمة الفرعية 1 المهام الفرعية الفرعية، المهمة الفرعية 1A، المهمة الفرعية 1B والمهمة ال
Semeval 2021 المهمة 7، Hahackathon، كانت أول مهمة مشتركة للجمع بين المجالات المنفصلة سابقا من الكشف عن الفكاهة والكشف عن الجريمة. جمعنا 10000 نص من تويتر ومجموعات بيانات النكات القصيرة في Kaggle، وكان كل منها مشروح من الفكاهة والجريمة بمقدار 20 حديثا
في هذه الورقة، نصف النظم المستخدمة من قبل فريق الروما في المهمة المشتركة بشأن الكشف عن الفكاهة والفكاهة والجريمة (HAHAHACHATHON) في Semeval 2021. تعتمد أنظمتنا على تمثيلات البيانات المستفادة من خلال نماذج اللغة العصبية التي تم ضبطها بشكل جيد. على وجه
الهوكاثون: كشف وتصنيف الفكاهة والجريمة "مهمة في المنافسة في Semeval 2021 تركز على الكشف عن مستوى الفكاهة والتقييم في الجمل، وكذلك مستوى اللياء الوارد في هذه النصوص مع النغمات الفكاهية.في هذه الورقة، نقدم نهجا يعتمد على تقنيات التعلم العميقة الأخيرة م