تصف هذه الورقة النظام المستخدم من قبل فريق Aimh للتعامل مع المهمة السامية 6. نقترح نهج يعتمد على بنية بناء على نموذج المحول لمعالجة المحتوى متعدد الوسائط (النص والصور) في الميمات.بنية لدينا، تسمى DVTT (محول نصي مرئي مزدوج)، تقترب من المهام الفرعية 1 و 3 من المهمة 6 كمشاكل تصنيف متعددة التسميات، حيث تتم معالجة نص و / أو صور ميمي، واحتمالات وجود كل إقناع محتمليتم إرجاع التقنية نتيجة لذلك.يستخدم DVTT شبكتان كاملا من المحولات التي تعمل على النص والصور مشروطة بشكل متبادل.يعمل أحد الطرائقين كأداة رئيسية والثانية التدخل في إثراء أول واحد، وبالتالي الحصول على طريقتين مميزين للعمل.يتم دمج مخرجات المحولاتين عن طريق حساب احتمالات الاستفادة من كل ملصق ممكن، ويتم تدريب الشبكة الشاملة على نهاية إلى نهاية مع فقدان انتروبيا ثنائي.
This paper describes the system used by the AIMH Team to approach the SemEval Task 6. We propose an approach that relies on an architecture based on the transformer model to process multimodal content (text and images) in memes. Our architecture, called DVTT (Double Visual Textual Transformer), approaches Subtasks 1 and 3 of Task 6 as multi-label classification problems, where the text and/or images of the meme are processed, and the probabilities of the presence of each possible persuasion technique are returned as a result. DVTT uses two complete networks of transformers that work on text and images that are mutually conditioned. One of the two modalities acts as the main one and the second one intervenes to enrich the first one, thus obtaining two distinct ways of operation. The two transformers outputs are merged by averaging the inferred probabilities for each possible label, and the overall network is trained end-to-end with a binary cross-entropy loss.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة نظامنا المشارك في المهمة 6 من Semeval-2021: تركز المهمة على تصنيف تقنية الدعاية متعددة الوسائط وتهدف إلى تصنيف الصورة والنص في 22 فئة. في هذه الورقة، نقترح استخدام الهندسة المعمارية القائمة على المحولات لفوسات القرائن من كل من الصورة و
الميمات هي واحدة من الأنواع الأكثر شعبية من المحتوى المستخدمة لنشر المعلومات عبر الإنترنت.يمكنهم التأثير على عدد كبير من الناس من خلال التقنيات الخطابية والنفسية.تتمثل المهمة والكشف عن تقنيات الإقناع في النصوص والصور، والكشف عن هذه التقنيات المقنعة ف
نحن نصف أنظمتنا من SubTask1 و SubTask3 لمهمة Semeval-2021 6 على اكتشاف تقنيات الإقناع في النصوص والصور.الغرض من SubTask1 هو تحديد تقنيات الدعاية المعطاة المحتوى النصي، وهدف الفرع SubTask3 هو اكتشافها بالنظر إلى كل من المحتوى النصي والبصرية.بالنسبة إل
الكشف والتصنيف في وقت واحد هو مهمة غير موجهة حاليا في أطر NLP القياسية.تصف هذه الورقة السبب وكيف تم استخدام نموذج الترفيح في الجمع بين الكشف عن الفحص والتصنيف لمعالجة SubTask 2 من مهمة Semeval-2021 6.
تنقل تنبؤ التعقيد المعجمي (LCP) باحسن مستوى تعقيد رمز رمزي أو مجموعة من الرموز في جملة.يلعب دورا حيويا في تحسين مهام NLP المختلفة بما في ذلك التبسيط المعجمي والترجمات وتوليد النص.ومع ذلك، فإن المعنى المتعدد لكلمة في ظروف متعددة، وهيكل مجمع نحوي، والا