المستندات العلمية مليئة بالقياسات المذكورة في تنسيقات وأنماط مختلفة. على هذا النحو، في وثيقة ذات كميات متعددة والكيانات المقاسة، فإن مهمة ربط كل كمية إلى كيانها المقاس المقابل أمر صعب. وبالتالي، من الضروري الحصول على طريقة لاستخراج جميع القياسات والسمات ذات الصلة بكفاءة. تحقيقا لهذه الغاية، في هذه الورقة، نقترح نموذجا جديدا لمهمة استخراج العلاقات المتعلقة بالقياس (MRE) هدفه هو التعرف على العلاقة بين الكيانات والكميات والظروف المقاسة المذكورة في وثيقة. توظف نموذجنا هندسا عميقا قائمة على الترجمة من أجل تحقيق الكلمات المهمة ديناميكيا في الوثيقة لتصنيف العلاقة بين زوج من الكيانات. علاوة على ذلك، نقدم تقنية تنظيمية جديدة تعتمد على اختناق المعلومات (IB) لتصفية المعلومات الصاخبة من المجموعة الناجمة عن الكلمات المهمة. تجاربنا على مجموعة بيانات مهمة Semeval 2021 الأخيرة تكشف عن فعالية النموذج المقترح.
Scientific documents are replete with measurements mentioned in various formats and styles. As such, in a document with multiple quantities and measured entities, the task of associating each quantity to its corresponding measured entity is challenging. Thus, it is necessary to have a method to efficiently extract all measurements and attributes related to them. To this end, in this paper, we propose a novel model for the task of measurement relation extraction (MRE) whose goal is to recognize the relation between measured entities, quantities, and conditions mentioned in a document. Our model employs a deep translation-based architecture to dynamically induce the important words in the document to classify the relation between a pair of entities. Furthermore, we introduce a novel regularization technique based on Information Bottleneck (IB) to filter out the noisy information from the induced set of important words. Our experiments on the recent SemEval 2021 Task 8 datasets reveal the effectiveness of the proposed model.
المراجع المستخدمة
https://aclanthology.org/
يصف هذا العمل نهجنا للمهام الفرعية للمهمة Semeval-2021 8: MeasessVal: التهم والقياسات التي أخذت المركز الأول الرسمي في المسابقة.لحل جميع المهام الفرعية، نستخدم التعلم متعدد المهام بطريقة تشبه الإجابة على الأسئلة.نحن نستخدم أيضا الأوزان العددية في الو
تقدم هذه الورقة النظام لمهمة Semeval 2021 8 (MEADEVAL).تعد MEADEVAL مهمة استخراج رواية وتصنيف واستخراج العلاقات التي تركز على إيجاد كميات وسمات هذه الكميات ومعلومات إضافية، بما في ذلك الكيانات المقاسة ذات الصلة والخصائص وسياقات القياس.يتألف نظامنا ال
تهدف MeasessVal إلى تحديد الكميات إلى جانب الكيانات التي تقاس خصائص إضافية داخل الوثائق العلمية الإنجليزية.مجموعة متنوعة من الأساليب المستخدمة تجعل القياسات، الجانب الأكثر أهمية في الكتابة العلمية، صعبة الاستخراج.تقدم هذه الورقة دراسات الاجتثاثات في
تشرح هذه الورقة تصميم نظام غير متجانس في المرتبة الثامنة في المنافسة في مهمة Semeval2021 8. نقوم بتحليل تجارب الأزمة وإظهار كيفية تأثير مكونات النظام، وهي المراكز الملاقة، معرف الوحدة، مصنف المعدل ونموذج اللغة، على النتيجة الإجمالية.قارنا نتائجنا إلى
نحن تصف MeasessVal، وهي مهمة سامية لاستخراج التهم، والقياسات، والسياق ذات الصلة من الوثائق العلمية، وهي ذات أهمية كبيرة لإنشاء الرسوم البيانية المعرفة التي تقطرن معلومات من الأدبيات العلمية.هذه مهمة جديدة في عام 2021، والتي تم استلام أكثر من 75 تقرير