ترغب بنشر مسار تعليمي؟ اضغط هنا

على السياق الكمي مثل العبارات الغامضة

On the Quantum-like Contextuality of Ambiguous Phrases

552   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اللغة هي السياق مثل المعاني من الكلمات تعتمد على سياقاتها.السياق هو، من المفهوم المحدد جيدا في ميكانيكا الكم حيث يعتبر موردا كبيرا لحسابات الكمومية.نحن نحقق في ما إذا كانت اللغة الطبيعية تعرض أي من الميزات السياقية الميكانيكية الكمومية.نظير على أنه يمكن تصميم مجموعات المعنى في عبارات غامضة في الإطار النظري للحز في السياق الكمومي، حيث يمكن أن تصبح حيازة حيازة.باستخدام إطار عمل السياق من قبل الافتراضي (CBD)، نستكشف المتغيرات الاحتمالية لهذه وإظهار أن سياق CBD هو ممكن أيضا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يجب أن تتخذ أنظمة المساعدة الإنسانية مثل أنظمة الحوار إجراءات مدروسة ومناسبة ليس فقط لطلبات المستخدم الواضحة وغير التي لا لبس فيها، ولكن أيضا لطلبات المستخدم الغامضة، حتى لو لم يكن المستخدمون أنفسهم على دراية بمتطلباتهم المحتملة. لبناء مثل هذا وكيل ا لحوار، قامنا بجمع كوربوس وتطوير نموذج يصنف طلبات المستخدم الغامضة في إجراءات النظام المقابلة. من أجل جمع كوربوس عالي الجودة، طلبنا من العمال لإدخال طلبات المستخدم السابقة لامرأة التي يمكن اعتبار الإجراءات المحددة مسبقا مدروسا. على الرغم من أن الإجراءات المتعددة يمكن تحديدها على أنها مدروس لطلب مستخدم واحد، فإن فحص جميع مجموعات طلبات المستخدمين وإجراءات النظام غير عملي. لهذا السبب، شرحنا بالكامل فقط بيانات الاختبار وترك التعليق التوضيحي لبيانات التدريب غير مكتملة. لتدريب نموذج التصنيف على بيانات التدريب هذه، طبقنا طريقة التعلم الإيجابية / غير المستمرة (PU)، التي تفترض أن جزءا فقط من البيانات يتم وصفه بأمثلة إيجابية. تظهر النتائج التجريبية أن طريقة التعلم بو تحقق أداء أفضل من طريقة التعلم الإيجابية / السلبية العامة (PN) لتصنيف الإجراءات المدروسة بالنظر إلى طلب مستخدم غامض.
نؤيد موضوع اتجاه الترجمة في البيانات المستخدمة لتدريب أنظمة الترجمة الآلية العصبية والتركيز على سيناريو في العالم الحقيقي مع اتجاه الترجمة المعروفة والاختلالات في اتجاه الترجمة: هانزارد الكندي.وفقا للمقاييس التلقائية ونحن نلاحظ أنه باستخدام البيانات الموازية التي تم إنتاجها في "اتجاه الترجمة" المطابقة (الهدف الأصيل والترجمة) يحسن جودة الترجمة.في حالات عدم توازن البيانات من حيث اتجاه الترجمة ونتجد أن وضع العلامات على اتجاه الترجمة يمكن إغلاق فجوة الأداء.نقوم بإجراء تقييم بشري يختلف قليلا عن المقاييس التلقائية، لكنه يؤكد ذلك على هذه البيانات الفرنسية الإنجليزية المعروفة لاحتواء ترجمات عالية الجودة ومصدر مختلط أصيل أو مختار على تحسين المصدر المرتبط بالترجمة للتدريب.
توليد أزواج الإجابة ذات الجودة العالية هي مهمة صلبة ولكنها ذات مغزى. على الرغم من أن الأعمال السابقة قد حققت نتائج رائعة حول توليد الأسئلة على دراية بالإجابة، فمن الصعب تطبيقها في تطبيق عملي في مجال التعليم. تتناول هذه الورقة لأول مرة مهمة توليد زوج الإجابة السؤال في بيانات الفحص العالمي الحقيقي، وتقترح إطارا جديدا جديدا في العرق. لالتقاط المعلومات المهمة لمقطع الإدخال، نقوم أولا بإنشاء أجهزة iTPhragrases (بدلا من استخراج)، وبالتالي يتم تقليل هذه المهمة إلى توليد مشترك مسدد السؤال عن السؤال المجاني. تبعا لذلك، نقترح نموذج اتصالات متعددة الوكيل لتوليد واستفسار الأسئلة والمجاسات القصيرة بشكل متكرر، ثم قم بتطبيق السؤال والمجاسيات المتولدة لتوجيه جيل الإجابات. لإنشاء معيار قوي، نبني نموذجنا على نموذج ما قبل التدريب الجيل القوي. تظهر النتائج التجريبية أن نموذجنا يجعل اختراقات كبيرة في مهمة جيل الإجابة عن السؤال. علاوة على ذلك، فإننا نصنع تحليلا شاملا على طرازنا، مما يشير إلى اتجاهات جديدة لهذه المهمة الصعبة.
مع ظهور Advent of Store argeddings، زادت الاهتمام تجاه نهج التصنيف العصبي لاسترجاع المعلومات بشكل كبير. ومع ذلك، ظلت جائبتان مهمان إلى حد كبير: I) عادة ما تتكون الاستعلامات من عدد قليل من الكلمات الرئيسية فقط، مما يزيد من الغموض ويجعل سياقه أكثر صعوب ة، والثاني) أداء التصنيف العصبي على المستندات غير الإنجليزية لا يزال مرهقا بسبب نقص مجموعات البيانات المسمى. في هذه الورقة، نقدم سيدي (استرجاع المعلومات المحسنة) للتخفيف من المشكلتين من خلال الاستفادة من معلومات معنى النص. يكمن في جوهر نهجنا آلية توسيع عملية استعلام متعددة اللغات الرواية بناء على غزانة إحساس النصوص التي توفر تعريفات المعنى بأنها معلومات دلالية إضافية للاستعلام. الأهم من ذلك، نحن نستخدم الحواس كجسر عبر اللغات، وبالتالي السماح لطرازنا بأداء أفضل بكثير من بدائلها الخاضعة للإشراف وغير المعروضة عبر اللغات الفرنسية والألمانية والإيطالية والإسبانية على العديد من المعايير المفصيلة المفكف، بينما يتم تدريبها على بيانات Robust04 الإنجليزية فقط. نطلق سراح سيدي في https://github.com/sapienzanlp/sir.
يتوصل البحث إلى إمكانية تفسير منحنيات السبر الكهربائي الشاقولي لمنحنيات حقلية حقيقية, بعد أن تم التوصل إلى حساب المقاومية الظاهرية من خلال معادلة صالحة لجميع التشكيلات. V(r)=I/2 πr[C1pn+T() + C2p1] نتائج البحث توفر الكثير من الوقت والجهد في معا لجة و تفسير المعطيات الجيوكهربائية, وتنعكس ايجابيا على تفسير السبر الكهربائي الشاقولي أكاديمياً و تطبيقياً

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا