ترغب بنشر مسار تعليمي؟ اضغط هنا

التدريب متعدد المراجع لتوليد استجابة الحوار

Multi-Referenced Training for Dialogue Response Generation

500   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في توليد استجابة الحوار مفتوح المجال، يمكن أن يستمر سياق الحوار مع ردود متنوعة، وينبغي أن تتخذ طرازات الحوار علاقات واحدة إلى كثيرة.في هذا العمل، نقوم أولا بتحليل الهدف التدريبي لنماذج الحوار من وجهة نظر اختلاف Kullback-Leibler (KLD) وإظهار أن الفجوة بين توزيع الاحتمالات العالمي الحقيقي وتوزيع احتمالية البيانات المرجعية الفردية يمنع النموذج من تعلم الواحدإلى العديد من العلاقات بكفاءة.ثم نستكشف النهج للتدريب متعدد الإشارة في جوانبين.البيانات الحكيمة، ونحن نولد إشارات زائفة متنوعة من نموذج قوي مسبقا لبناء بيانات متعددة المرجعين توفر تقريب أفضل لتوزيع العالم الحقيقي.نموذج الحكمة، نقترح تجهيز نماذج مختلفة مع تعبيري قبل التعبير، اسمه Linear Gaussian النموذج (LGM).تظهر النتائج التجريبية للتقييم الآلي والتقييم البشري أن الطرق تسفر عن تحسينات كبيرة على أساس الأساس.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

بالنسبة لجهاز كمبيوتر يتفاعل بشكل طبيعي مع إنسان، يجب أن يكون يشبه الإنسان.في هذه الورقة، نقترح نموذج توليد الاستجابة العصبي مع التعلم متعدد المهام للجيل والتصنيف، مع التركيز على العاطفة.يتم تدريب نموذجنا على أساس بارت (لويس وآخرون.، 2020)، وهو نموذج ترميز ترميز محول مدرب مسبقا، لتوليد الردود والاعتراف بالمشاعر في وقت واحد.علاوة على ذلك، فنحن نثق خسائر المهام للتحكم في تحديث المعلمات.تظهر التقييمات التلقائية والتقييمات الدليلية للجماعة الجماعية أن النموذج المقترح يجعل الردود التي تم إنشاؤها أكثر وعيا بنفسك.
على الرغم من أن تحيز التعرض قد درس على نطاق واسع في بعض مهام NLP، إلا أنه يواجه تحدياته الفريدة في توليد استجابة الحوار، وسيناريو الجيل الممثل الأول إلى مختلف. في الحوار الإنساني الحقيقي، هناك العديد من الردود المناسبة لنفس السياق، ليس فقط مع تعبيرات مختلفة، ولكن أيضا مع مواضيع مختلفة. لذلك، بسبب الفجوة الأكبر بكثير بين العديد من ردود الحقيقة الأرضية والاستجابة الاصطناعية التي تم إنشاؤها، فإن تحيز التعرض أكثر تحديا في مهمة توليد الحوار. ما هو أكثر من ذلك، حيث يشجع MLE النموذج على تعلم الكلمات الشائعة فقط بين ردود الحقيقة المختلفة ، ولكن يتجاهل الأجزاء المثيرة والمحددة، قد يؤدي التحيز التعريض إلى أن يؤدي المزيد إلى مشكلة توليد الاستجابة المشتركة، مثل لا أعرف "وهاها؟" في هذه الورقة، نقترح آلية تحول التكيف الرواية، والتي تتعلم العبور تلقائيا بين التعلم الأساسي للحقيقة وتولد التعلم فيما يتعلق بدرجة مطابقة على مستوى الكلمة، مثل تشابه جيب التمام. تظهر النتائج التجريبية على كل من مجموعة بيانات STC الصينية ومجموعة بيانات Reddit الإنجليزية، أن طريقتنا التكيفية تحقق تحسنا كبيرا من حيث التقييم القائم على المتري والتقييم البشري، مقارنة بنهج تحيز التعرض للدولة القصيرة. يظهر تحليل إضافي حول مهمة NMT أيضا أن طرازنا يمكن أن يحقق تحسنا كبيرا.
تمت دراسة AcoNecoders Varitional كهدوء واعد لنموذج تعيينات واحدة إلى العديد من السياق للاستجابة في توليد استجابة الدردشة.ومع ذلك، غالبا ما تفشل في تعلم التعيينات المناسبة.أحد أسباب هذا الفشل هو التناقض بين الاستجابة وأخذ عينات متغير كامنة من توزيع تق ريبي في التدريب.أخذ عينات من غير لائق للمتغيرات الكامنة عليق النماذج من بناء مساحة كامنة بتعديل.نتيجة لذلك، تتوقف النماذج عن التعامل مع عدم اليقين في المحادثات.لحل ذلك، نقترح أخذ العينات المضاربة للمتغيرات الكامنة.تختار طريقتنا الأكثر احتمالا من متغيرات كامنة العينات بشكل زمني لربط المتغير مع استجابة معينة.نحن نؤكد فعالية طريقتنا في توليد الاستجابة مع بيانات حوار هائلة مصنوعة من مشاركات تويتر.
توليد الحوار المكيف يعاني من ندرة الردود المسمى.في هذا العمل، استغلالنا بيانات نصية غير حوار مرتبطة بالشرط، والتي هي أسهل بكثير لجمعها.نقترح نهج تعليمي متعدد المهام للاستفادة من كل من الحوار والبيانات النصية المسمى.تقوم المهام الثلاثة بتحسين نفس مهمة توليد الحوار المحول مدببت مسبقا على بيانات الحوار المسمى، ومهمة ترميز اللغة مشروطة ومهمة توليد اللغة مشروطة على البيانات النصية المسمى.تظهر النتائج التجريبية أن نهجنا يتفوق على النماذج الحديثة من خلال الاستفادة من النصوص المسمى، كما أنه يحصل أيضا على تحسين أكبر في الأداء مقارنة بالطرق السابقة لاستفادة البيانات النصية.
يستخدم البشر منطق المنطقي (CSR) ضمنيا لإنتاج ردود طبيعية ومتماسكة في المحادثات. تهدف إلى إغلاق الفجوة بين نماذج جيل الاستجابة الحالية (RG) قدرات الاتصالات البشرية، نريد أن نفهم لماذا تستجيب نماذج RG أثناء قيامهم بتحقيق فهم نموذج RG للمنطق المنطقي الذ ي يثير الاستجابات المناسبة. نحن نقوم بإضفاء الطابع الرسمي على المشكلة عن طريق تأطير العمولة كمتغير كامن في مهمة RG واستخدام توضيحات للاستجابات كأشكال نصية من العمليات النصية. نجمع 6K تفسيرات مشروحة تبرر الردود من أربعة مجموعات من مجموعات بيانات الحوار ونسأل البشر للتحقق منها واقتراح اثنين من إعدادات التحقيق لتقييم قدرات CSR نماذج RG. تظهر النتائج التحقيق أن النماذج تفشل في التقاط العلاقات المنطقية بين تفسيرات والردود المنطقية والضبط بشكل جيد على البيانات داخل المجال والأحجام النموذجية المتزايدة لا تؤدي إلى فهم المسؤولية الاجتماعية للشركات ل RG. نأمل أن تقوم دراستنا بحفز المزيد من الأبحاث في جعل نماذج RG محاكاة عملية التفكير البشرية في السعي لتحقيق اتصال ناعم للإنسان العربي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا