ترغب بنشر مسار تعليمي؟ اضغط هنا

أنماط الاعتمادية للجمل المعقدة والكفوال الدلالي لتحليل التمثيل التجريدي

Dependency Patterns of Complex Sentences and Semantic Disambiguation for Abstract Meaning Representation Parsing

270   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تمثيل المعنى التجريدي (AMR) هو تمثيل معنى على مستوى الجملة بناء على هيكل الوسائد المسند.أحد التحديات التي نجدها في تحليل عمرو هي التقاط هيكل الجمل المعقدة التي تعبر عن العلاقة بين المسندات.إن معرفة الجزء الأساسي من هيكل الجملة مقدما قد يكون مفيدا في مثل هذه المهمة.في هذه الورقة، نقدم قائمة أنماط التبعية للإنشاءات الإنكليزية المجامعة المصممة لتحليل عمرو.مع مرحلة مانعة نمط مخصصة، يتم استرداد جميع حدوث إنشاءات الجملة المعقدة من جملة مدخلات.في حين أن بعض المسحاتين لديهم غموض دليون، فإننا نتعامل مع هذه المشكلة من خلال نماذج تصنيف التدريب على البيانات المستمدة من AMR و Wikipedia Corpus، وإنشاء خط أساس جديد للأعمال المستقبلية.سيتم الإعلان عن أنماط الجملة المجامعة المتقدمة وأوصاف عمرو المقابلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

اكتسبت توليف البيانات لتحليل الدلالي اهتماما متزايدا مؤخرا. ومع ذلك، فإن معظم الطرق تتطلب قواعد يدوية (عالية الدقة) في عملية توليدها، مما يعوق استكشاف بيانات غير مرئية متنوعة. في هذا العمل، نقترح نموذجا عاما يتميز ببرنامج PCFG (غير العصبي) نماذج تكوي ن البرامج (E.G.، SQL)، ونموذج الترجمة المستندة إلى BART خرائط برنامج إلى كلام. نظرا لبساطة PCFG و BART المدربة مسبقا، يمكن تعلم نموذجنا التوليدي بكفاءة من البيانات الموجودة في متناول اليد. علاوة على ذلك، يؤدي التركيبات النمذجة بشكل صريح باستخدام PCFG إلى استكشاف أفضل لبرامج غير مرئية، وبالتالي توليد بيانات أكثر تنوعا. نقوم بتقييم طريقتنا في كل من الإعدادات داخل المجال والخروج من تحليل النص إلى SQL على المعايير القياسية للجهازية والعنكب العنكبوت، على التوالي. تبين نتائجنا التجريبية أن البيانات المركبة التي تم إنشاؤها من طرازنا يمكن أن تساعد بشكل كبير في محلل الدلالي يحقق تعميم أفضل أو مجال.
في هذه الورقة، نقترح نموذجا طبيعيا عالميا لتحليل القواعد النحوية الخالية من السياق (CFG).بدلا من التنبؤ باحتمال، يتوقع نموذجنا درجة حقيقية في كل خطوة ولا تعاني من مشكلة تحيز التسمية.تظهر التجارب أن نهجنا تفوق النماذج الطبيعية محليا على مجموعات البيان ات الصغيرة، لكنها لا تسفر عن تحسن على مجموعة بيانات كبيرة.
AM تحليل التبعية هي طريقة لتحليل الرسم البياني الدلالي العصبي الذي يستغل مبدأ التركيبية.على الرغم من أن محلل التبعية، فقد تبين أن محلل التبعية سريعة ودقيقة عبر العديد من الرسوم البيانية، فإنها تتطلب عبائيات صريحة لهياكل الأشجار التركيبية للتدريب.في ا لماضي، تم الحصول على هؤلاء استخدام الاستدلال المعقدة من الرسوم المشتركة من قبل الخبراء.هنا نظهر كيف يمكن تدريبهم بدلا من ذلك مباشرة على الرسوم البيانية مع نموذج متغير كامنة عصبي، مما يقلل بشكل كبير من كمية وتعقيد الاستدلال اليدوي.نوضح أن نموذجنا يلتقط العديد من الظواهر اللغوية بمفرده وتحقق دقة مماثلة للتدريب الخاضع للإشراف، مما يسهل بشكل كبير استخدام تحليل التبعية لشبانس جديدة.
تمثيل المعنى التجريدي (AMR) هو لغة تمثيل معنى رسومي مصممة لتمثيل معلومات الاقتراح حول هيكل الوسيطة. ومع ذلك، فإنه غير قادر في الوقت الحاضر على تمثيل السياقات غير التابعة غير التابعة بشكل مرضي، وغالبا ما ترخيص الاستدلالات غير اللائقة. في هذه الورقة، ن ظهر كيفية حل مشكلة عدم اليريدية دون جاذبية الرسوم البيانية الطبقات من خلال رسم خرائط من AMRS في حساب التفاضل والتكامل Lambda المكتوبة ببساطة (STLC). على الأقل بالنسبة لبعض الحالات، يتطلب ذلك إدخال دور جديد: المحتوى الذي يعمل كمشغل متباين. الترجمة المقترحة مستوحاة من أدب اللغويات الرسمية في دلالات الأحداث في تقارير الموقف. بعد ذلك، نتعلم تفاعل نطاق الكمي والمشغلين المتهمين في غمائم دي / دي ديكتو المزعومة. نعتمد عقدة النطاق من الأدب وتوفير دلالات صريحة متعددة الأبعاد تستخدم تخزين كوبر يتيح لنا أن تستمد قراءات DE RE و De De Di Dicto بالإضافة إلى قراءات نطاق الوسيط والتي تثبت صعوبة في الحسابات دون عقدة نطاق.
البشر قادرون على تعلم مفاهيم جديدة من أمثلة قليلة جدا؛ في المقابل، تحتاج خوارزميات التعلم في الآلة الحديثة عادة الآلاف من الأمثلة للقيام بذلك. في هذه الورقة، نقترح خوارزمية لتعلم مفاهيم جديدة من خلال تمثيلها كبرامج بشأن المفاهيم القائمة. وبهذه الطريق ة، تعتبر مشكلة التعلم المفهوم بشكل طبيعي مشكلة تخليق برنامجا وتخصصت خوارزميةنا من بعض الأمثلة لتوليف برنامج يمثل مفهوم الرواية. بالإضافة إلى ذلك، نقوم بإجراء تحليل نظري لنهجنا للقضية التي يكون فيها البرنامج الذي يحدد مفهوم الرواية على تلك الموجودة خالية من السياق. نظهر أنه بالنظر إلى المحلل المحلل القائم على النحو المستفاد وقاعدة الإنتاج الجديدة، يمكننا زيادة المحلل بمحلل مع قاعدة الإنتاج بطريقة تعميم. نقيم نهجنا من خلال مفاهيم التعلم في مجال التحليل الدلالي الممتد إلى إعداد تعلم مفهوم الرواية القليلة، مما يظهر أن نهجنا يتفوق بشكل كبير على المحللين الدلالي العصبي المنتهي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا