ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم توليف البيانات لتحليل الدلالي

Learning to Synthesize Data for Semantic Parsing

710   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

اكتسبت توليف البيانات لتحليل الدلالي اهتماما متزايدا مؤخرا. ومع ذلك، فإن معظم الطرق تتطلب قواعد يدوية (عالية الدقة) في عملية توليدها، مما يعوق استكشاف بيانات غير مرئية متنوعة. في هذا العمل، نقترح نموذجا عاما يتميز ببرنامج PCFG (غير العصبي) نماذج تكوين البرامج (E.G.، SQL)، ونموذج الترجمة المستندة إلى BART خرائط برنامج إلى كلام. نظرا لبساطة PCFG و BART المدربة مسبقا، يمكن تعلم نموذجنا التوليدي بكفاءة من البيانات الموجودة في متناول اليد. علاوة على ذلك، يؤدي التركيبات النمذجة بشكل صريح باستخدام PCFG إلى استكشاف أفضل لبرامج غير مرئية، وبالتالي توليد بيانات أكثر تنوعا. نقوم بتقييم طريقتنا في كل من الإعدادات داخل المجال والخروج من تحليل النص إلى SQL على المعايير القياسية للجهازية والعنكب العنكبوت، على التوالي. تبين نتائجنا التجريبية أن البيانات المركبة التي تم إنشاؤها من طرازنا يمكن أن تساعد بشكل كبير في محلل الدلالي يحقق تعميم أفضل أو مجال.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

AM تحليل التبعية هي طريقة لتحليل الرسم البياني الدلالي العصبي الذي يستغل مبدأ التركيبية.على الرغم من أن محلل التبعية، فقد تبين أن محلل التبعية سريعة ودقيقة عبر العديد من الرسوم البيانية، فإنها تتطلب عبائيات صريحة لهياكل الأشجار التركيبية للتدريب.في ا لماضي، تم الحصول على هؤلاء استخدام الاستدلال المعقدة من الرسوم المشتركة من قبل الخبراء.هنا نظهر كيف يمكن تدريبهم بدلا من ذلك مباشرة على الرسوم البيانية مع نموذج متغير كامنة عصبي، مما يقلل بشكل كبير من كمية وتعقيد الاستدلال اليدوي.نوضح أن نموذجنا يلتقط العديد من الظواهر اللغوية بمفرده وتحقق دقة مماثلة للتدريب الخاضع للإشراف، مما يسهل بشكل كبير استخدام تحليل التبعية لشبانس جديدة.
البشر قادرون على تعلم مفاهيم جديدة من أمثلة قليلة جدا؛ في المقابل، تحتاج خوارزميات التعلم في الآلة الحديثة عادة الآلاف من الأمثلة للقيام بذلك. في هذه الورقة، نقترح خوارزمية لتعلم مفاهيم جديدة من خلال تمثيلها كبرامج بشأن المفاهيم القائمة. وبهذه الطريق ة، تعتبر مشكلة التعلم المفهوم بشكل طبيعي مشكلة تخليق برنامجا وتخصصت خوارزميةنا من بعض الأمثلة لتوليف برنامج يمثل مفهوم الرواية. بالإضافة إلى ذلك، نقوم بإجراء تحليل نظري لنهجنا للقضية التي يكون فيها البرنامج الذي يحدد مفهوم الرواية على تلك الموجودة خالية من السياق. نظهر أنه بالنظر إلى المحلل المحلل القائم على النحو المستفاد وقاعدة الإنتاج الجديدة، يمكننا زيادة المحلل بمحلل مع قاعدة الإنتاج بطريقة تعميم. نقيم نهجنا من خلال مفاهيم التعلم في مجال التحليل الدلالي الممتد إلى إعداد تعلم مفهوم الرواية القليلة، مما يظهر أن نهجنا يتفوق بشكل كبير على المحللين الدلالي العصبي المنتهي.
في هذه الورقة، نقترح نموذجا طبيعيا عالميا لتحليل القواعد النحوية الخالية من السياق (CFG).بدلا من التنبؤ باحتمال، يتوقع نموذجنا درجة حقيقية في كل خطوة ولا تعاني من مشكلة تحيز التسمية.تظهر التجارب أن نهجنا تفوق النماذج الطبيعية محليا على مجموعات البيان ات الصغيرة، لكنها لا تسفر عن تحسن على مجموعة بيانات كبيرة.
تهدف التحليل الدلالي إلى ترجمة كلام اللغة الطبيعية (NL) على البرامج القابلة للتفسير بالآلة، والتي يمكن تنفيذها مقابل بيئة عالمية حقيقية. منذ فترة طويلة تم الاعتراف بالشروح باهظة الثمن لأزواج برنامج الكلام كعقوبة رئيسية لنشر النماذج العصبية المعاصرة ل تطبيقات الحياة الحقيقية. في هذا العمل، نركز على مهمة التعلم شبه الإشراف حيث يتوفر كمية محدودة من البيانات المشروحة مع العديد من الكلمات غير المستقرة غير المسبقة. بناء على الملاحظة التي يجب أن تكون البرامج التي تتوافق مع الكلام NL قابلة للتنفيذ دائما، نقترح تشجيع المحلل المحلل لتوليد برامج قابلة للتنفيذ للكلمات غير المسبقة. نظرا لمسافة البحث الكبير للبرامج القابلة للتنفيذ، والأساليب التقليدية التي تستخدم شعاع البحث عن التقريب، مثل التدريب الذاتي والتدريب الهامشي الأعلى، لا تؤدي كذلك. بدلا من ذلك، نقترح مجموعة من أهداف التدريب الجديدة المستمدة من خلال الاقتراب من مشكلة التعلم من عمليات الإعدام من منظور التنظيم الخلفي. أهدافنا الجديدة تفوق الطرق التقليدية في الليلة الماضية والجيوقي، سد الفجوة بين التعليم شبه الإشرافه والإشراف.
النموذج المهيمن للتحلل الدلالي في السنوات الأخيرة هو صياغة تحليل كمركز تسلسل إلى تسلسل، وتوليد تنبؤات مع فك تراجع التسلسل التلقائي.في هذا العمل، نستكشف نموذجا بديلا.نقوم بصياغة تحليل دلالي كهامة تحليل التبعية، وتطبيق تقنيات فك التشفير المستندة إلى ال رسم البياني المتقدمة لتحليل النحوي.نحن نقارن مختلف تقنيات فك التشفير بالنظر إلى نفس التشفير المحول المدرب مسبقا في أفضل مجموعة البيانات، بما في ذلك الإعدادات التي تكون فيها بيانات التدريب محدودة أو تحتوي على أمثلة مشروح جزئيا فقط.نجد أن نهجنا القائم على الرسم البياني لدينا هو تنافسي مع فك ترميز الترميز على الإعداد المعياري، ويقدم تحسينات كبيرة في كفاءة البيانات والإعدادات حيث تتوفر البيانات المشروح جزئيا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا