استكشف البحث المسبق قدرة النماذج الحسابية للتنبؤ بكلمة ملائمة للكلمة مع مسند معين. في حين تم تخصيص الكثير من العمل لنمذجة العلاقة النموذجية بين الأفعال والحجج بمعزل، في هذه الورقة، نأخذ منظور أوسع من خلال تقييم ما إذا كانت النهج الحسابية أو إلى أي مدى يمكن للمناهج الحسابية الوصول إلى المعلومات حول نموذجي الأحداث والمواقف بالكامل الموصوفة اللغة (معرفة الحدث المعمم). بالنظر إلى النجاح الأخير لنماذج لغة المحولات (TLMS)، قررنا اختبارها على معيار لتقدير ديناميكي للملاءمة المواضيعية. تم إجراء تقييم هذه النماذج مقارنة مع SDM، وهو إطار مصمم خصيصا لإدماج الأحداث في الجملة التي تعني التمثيلات، وجرينا تحليل خطأ مفصل للتحقيق في العوامل التي تؤثر على سلوكهم. تظهر نتائجنا أن TLMS يمكن أن تصل إلى العروض المقارنة لأولئك الذين حققتهم SDM. ومع ذلك، يقترح تحليل إضافي باستمرار أن TLMS لا تلتقط جوانب مهمة من المعرفة الحدث، وغالبا ما تعتمد تنبؤاتها على الميزات اللغوية السطحية، مثل الكلمات المتكررة والترحيل والأنماط الأساسية، مما يظهر قدرات التعميم دون المستوى الأمثل.
Prior research has explored the ability of computational models to predict a word semantic fit with a given predicate. While much work has been devoted to modeling the typicality relation between verbs and arguments in isolation, in this paper we take a broader perspective by assessing whether and to what extent computational approaches have access to the information about the typicality of entire events and situations described in language (Generalized Event Knowledge). Given the recent success of Transformers Language Models (TLMs), we decided to test them on a benchmark for the dynamic estimation of thematic fit. The evaluation of these models was performed in comparison with SDM, a framework specifically designed to integrate events in sentence meaning representations, and we conducted a detailed error analysis to investigate which factors affect their behavior. Our results show that TLMs can reach performances that are comparable to those achieved by SDM. However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge, and their predictions often depend on surface linguistic features, such as frequent words, collocations and syntactic patterns, thereby showing sub-optimal generalization abilities.
المراجع المستخدمة
https://aclanthology.org/
ألهمت البحوث اللغوية الحسابية على تغيير اللغة من خلال نماذج التوزيع الدلالي (DS) باحثين من مجالات مثل الفلسفة والدراسات الأدبية، الذين يستخدمون هذه الأساليب لاستكشاف ومقارنة مجموعات البيانات الصغيرة النسبية نسبيا تحليلها تقليديا عن طريق القراءة الدقي
يتطلب فهم اللغة الطبيعية الحس السليم، وهو جانب واحد منها هو القدرة على تمييز معقول الأحداث.في حين أن نماذج التوزيع --- أحدث نماذج لغة محول مؤخرا --- - - أظهرت تحسينات في حالة قدر نفواد الحدث، فإن أدائها لا يزال أقل من البشر.في هذا العمل، نظهر أن نماذ
نقدم نظاما للتعلم أنماط التعلم المعممة أو النمطية للأحداث - أو المخططات "--- من قصص اللغة الطبيعية، وتطبيقها على إجراء تنبؤات حول القصص الأخرى.يتم تمثيل مخططاتنا منطق Episodic، وهو شكل منطقي يعكسان عن كثب اللغة الطبيعية.من خلال البدء بمجموعة "مجموعة
أظهرت نماذج واسعة النطاق على نطاق واسع عروضا قوية على العديد من توليد اللغة الطبيعية وفهم المعايير.ومع ذلك، فإن إدخال العمولة فيها لتوليد نص أكثر واقعية يظل تحديا.مستوحاة من العمل السابق على جيل المعرفة المنطقي ومنطق العموم التوليد، نقدم طريقتين لإضا
هدف التنبؤ بالحقائق في الحدث (EFP) هو تحديد درجة الواقعية لذكر الحدث، مما يمثل مدى احتمال ذكر الحدث في النص.أظهرت نماذج التعلم العميق الحالية أهمية الهياكل النحوية واللاللالية للجمل لتحديد كلمات السياق الهامة ل EFP.ومع ذلك، فإن المشكلة الرئيسية في نم