ترغب بنشر مسار تعليمي؟ اضغط هنا

النموذج القائم على الجهاز التعلم للشعور والكشف عن السخرية

Machine Learning-Based Model for Sentiment and Sarcasm Detection

330   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

خلال السنوات القليلة الماضية، يكون عدد مستخدمي الإنترنت العربي والمحتوى العربي عبر الإنترنت في النمو الأسي.تعتبر التعامل مع مجموعات البيانات العربية واستخدام الجمل غير الصريحة للتعبير عن الرأي هي التحديات الرئيسية في مجال معالجة اللغات الطبيعية.وبالتالي، اكتسبت السخرية وتحليل المعنويات اهتماما كبيرا من مجتمع البحث، وخاصة في هذه اللغة.يمكن تطبيق الكشف التلقائي للاستخراج وتحليل المعنويات باستخدام ثلاث نهج، وهي نهج إشراف على الإشراف وغير الخاضع للإشراف والجاذبية.في هذه الورقة، تم استخدام نموذج يعتمد على خوارزمية لتعلم الآلة الإشراف يسمى آلة ناقلات الدعم (SVM) بهذه العملية.تم تقييم النموذج المقترح باستخدام DataSet Arsarcasm-V2.تمت مقارنة أداء النموذج المقترح مع النماذج الأخرى المقدمة إلى تحليل المعنويات والكشف عن السخرية المهمة المشتركة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم إدخال نماذج اللغة القائمة على المحولات خطوة ثورية لأبحاث معالجة اللغة الطبيعية (NLP). أدت هذه النماذج، مثل Bert، GPT و Electra، إلى أداء أحدث في العديد من مهام NLP. تم تطوير معظم هذه النماذج في البداية للغة الإنجليزية ولغات أخرى تبعها لاحقا. في ال آونة الأخيرة، بدأت عدة نماذج عربية خاصة الناشئة. ومع ذلك، هناك مقارنات محدودة مباشرة بين هذه النماذج. في هذه الورقة، نقيم أداء 24 من هذه النماذج على المعنويات العربية والكشف عن السخرية. تظهر نتائجنا أن النماذج التي تحققت أفضل أداء هي تلك التي يتم تدريبها على البيانات العربية فقط، بما في ذلك اللغة العربية ذاتي، واستخدام عدد أكبر من المعلمات، مثل Marbert صدر مؤخرا. ومع ذلك، لاحظنا أن ARAELECTRA هي واحدة من أفضل النماذج الأدائية بينما تكون أكثر كفاءة في تكلفتها الحسابية. أخيرا، أظهرت التجارب على المتغيرات Aragpt2 أداء منخفضة مقارنة بنماذج Bert، مما يشير إلى أنه قد لا يكون مناسبا لمهام التصنيف.
تقدم هذه الورقة استراتيجيتنا لمعالجة المهمة المشتركة EACL WANLP-2021: السخرية والكشف عن المعنويات.يهدف أحد المهن الفرعية إلى تطوير نظام يحدد ما إذا كانت سقسقة عربية معينة ساخرة في الطبيعة أم لا، في حين أن الآخر يهدف إلى تحديد مشاعر سقسقة اللغة العربي ة.نحن نقترب من المهمة في خطوتين.تتضمن الخطوة الأولى مسبقا لمعلومات البيانات المقدمة من خلال إجراء الإدراج والحذف وعمليات التجزئة في أجزاء مختلفة من النص.تنطوي الخطوة الثانية على تجربة متغيرات متعددة من نماذج محولتين، Araelectra وعربت.تم تصنيف نهجنا النهائي في المرتبة السابعة والرابعة في المهاجمين والكشف عن المشاعر الفرعية على التوالي.
تجذب تصنيف المعنويات والكشف عن السخرية الكثير من الاهتمام من قبل مجتمع البحوث NLP. ومع ذلك، فإن حل هاتين المشكلتين باللغة العربية وعلى أساس بيانات الشبكة الاجتماعية (I.E.، Twitter) لا يزال مصلحة أقل. في هذه الورقة نقدم حلولا مخصصة لتصنيف المعنويات وم هام الكشف عن السخرية التي تم تقديمها كجزء من مهمة مشتركة من قبل أبو فرحة وآخرون. (2021). نقوم بضبط نماذج المحولات الحالية المحولات الحالية لاحتياجاتنا. بالإضافة إلى ذلك، نستخدم مجموعة متنوعة من تقنيات التعلم الآلي مثل أخذ العينات الأولية والتكبير والتعبئة والتغليف واستخدام ميزات META لتحسين أداء النماذج. نحن نحقق درجة F1 من 0.75 على مشكلة تصنيف المعنويات حيث يتم حساب درجة F1 على الفصول الإيجابية والسلبية (لا يتم أخذ الفصل المحايد في الاعتبار). نحن نحقق درجة F1 من 0.66 فوق مشكلة الكشف عن السخرية حيث يتم حساب درجة F1 عبر الفئة الساخرة فقط. في كلتا الحالتين، يتم تقييم النتائج المذكورة أعلاه على Arsarcasm-V2 - مجموعة بيانات ممتدة من Arsarcasm (Farha و Magdy، 2020) تم تقديمها كجزء من المهمة المشتركة. هذا يعكس تحسنا لتحقيق أحدث النتائج في كلتا المهام.
وصفنا نظامنا المقدم لهذه المهمة المشتركة 2021 بشأن السخرية والكشف عن المعنويات باللغة العربية (أبو فرحة وآخرون، 2021).لقد تناولنا كل من المجموعات الفرعية، وهما اكتشاف السخرية (الفرعية 1) وتحليل المعرفات (SubTask 2).استخدمنا نماذج تمثيل نصية محكومة لل حالة من بين الفنون وتصنفها بشكل جيد وفقا لمهمة المصب في متناول اليد.كهدودي أول، استخدمنا بيرت متعددة اللغات من Google ثم المتغيرات العربية الأخرى: أرابيرت وأشرر وماربيرت.وجدت النتائج تظهر أن Marbert تفوقت على جميع النماذج المذكورة مسبقا بشكل عام، إما على التراكب الفرعي 1 أو Subtask 2.
نقدم ثلاث طرق تم تطويرها للمهمة المشتركة بشأن السخرية والكشف عن المعنويات باللغة العربية.نقدم خط الأساس الذي يستخدم ميزات شخصية N-Gram.نقترح أيضا طريقتين أكثر تطورا: شبكة عصبية متكررة مع تمثيل مستوى الكلمة وتصنيف الفرقة تعتمد على ميزات Word ومستوى ال أحرف.لقد اخترنا تقديم نتائج من مصنف الفرقة، لكن لم يكن ناجحا للغاية مقارنة بأفضل النظم: 22/37 بشأن اكتشاف السخرية و 15/22 على اكتشاف المعنويات.لقد بدا أخيرا أن خط الأساس لدينا قد تم تحسينه وتغلب على تلك النتائج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا