كانت الانتخابات الأمريكية 2020، أكثر من أي وقت مضى، تتميز بحملات وسائل التواصل الاجتماعي والاتهامات المتبادلة. نحن نحقق في هذه الورقة إذا كان هذا يتجلى أيضا في الاتصالات عبر الإنترنت من مؤيدي المرشحين بايدن وترامب، من خلال نطق التواصل البغيض والهجومي. نقوم بصياغة مهمة توضيحية، نمتلك فيها مهام الكشف عن الكلام والموقف البغيضة / الهجومية، والاحليق على 3000 تغريدات من فترة الحملة، إذا أعربوا عن موقف معين تجاه المرشح. بجانب الطبقات المنشأة المتميزة من مواتية وضد، نقوم بإضافة مواقف مختلطة ومحايدة وأوضح أيضا إذا تم ذكر مرشح تعبير الرأي. علاوة على ذلك، نحن نلاحظ إذا كانت سقسقة مكتوبة بأسلوب مسيء. وهذا يتيح لنا أن نحلل إذا كان مؤيدو جو بايدن والحزب الديمقراطي يتواصلون بشكل مختلف عن أنصار دونالد ترامب والحزب الجمهوري. يوضح مصنف Bert Baseline أن الكشف إذا كان شخص ما مؤيد للمرشح يمكن إجراء جودة عالية ( (.79 F1 و .64 F1، على التوالي). لا يزال الكشف التلقائي لخطاب الكراهية / الهجومية تحديا (مع .53 F1). تتمتع كوربوس لدينا علنا وتشكل مصدرا جديدا للنمذجة الحسابية للغة الهجومية قيد النظر في المواقف.
The 2020 US Elections have been, more than ever before, characterized by social media campaigns and mutual accusations. We investigate in this paper if this manifests also in online communication of the supporters of the candidates Biden and Trump, by uttering hateful and offensive communication. We formulate an annotation task, in which we join the tasks of hateful/offensive speech detection and stance detection, and annotate 3000 Tweets from the campaign period, if they express a particular stance towards a candidate. Next to the established classes of favorable and against, we add mixed and neutral stances and also annotate if a candidate is mentioned with- out an opinion expression. Further, we an- notate if the tweet is written in an offensive style. This enables us to analyze if supporters of Joe Biden and the Democratic Party communicate differently than supporters of Donald Trump and the Republican Party. A BERT baseline classifier shows that the detection if somebody is a supporter of a candidate can be performed with high quality (.89 F1 for Trump and .91 F1 for Biden), while the detection that somebody expresses to be against a candidate is more challenging (.79 F1 and .64 F1, respectively). The automatic detection of hate/offensive speech remains challenging (with .53 F1). Our corpus is publicly available and constitutes a novel resource for computational modelling of offensive language under consideration of stances.
المراجع المستخدمة
https://aclanthology.org/
الكشف عن اللغة الهجومية على Twitter لديها العديد من التطبيقات التي تتراوح من الكشف / التنبؤ بالتنبؤ لقياس الاستقطاب.في هذه الورقة، نركز على بناء مجموعة بيانات تغريدة عربية كبيرة.نقدم طريقة لبناء مجموعة بيانات غير متحيزة حسب الموضوع أو اللهجة أو الهدف
تعد التعميم المرتبطة مشكلة معروفة في الكشف عن الموقف (SD)، حيث تميل النظم إلى الأداء بشكل سيئ عند تعرضها للأهداف غير المرئية أثناء التدريب.بالنظر إلى أن شرح البيانات باهظ الثمن وتستغرق وقتا طويلا، فإن إيجاد طرق للاستفادة من البيانات غير المستقرة غير
توفر منصات الوسائط الاجتماعية (SM) مثل Twitter كميات كبيرة من البيانات في الوقت الفعلي والتي يمكن الاستفادة منها أثناء حالات الطوارئ الجماعية. تتطلب تطوير أدوات لدعم المجتمعات المتأثرة بالأزمات مجموعات البيانات المتاحة، والتي غالبا ما تكون موجودة لغا
يشكل التعميم الشامل مسألة مهمة للكشف عن الموقف (SD).في هذه الورقة القصيرة، نقوم بالتحقيق في SD الصلبة العدسة، حيث يتم الاستفادة من المعرفة من البيانات التي تم إنشاؤها من قبل المستخدم لتحسين الأخبار SD على أهداف غير مرئية أثناء التدريب.نقوم بتنفيذ شبك
نقدم نظاما للصفر بالرصاص لغة هجومية عبر اللغات وتصنيف الكلام الكراهية.تم تدريب النظام على مجموعات البيانات الإنجليزية واختباره في مهمة اكتشاف محتوى خطاب الكراهية والوسائط الاجتماعية الهجومية في عدد من اللغات دون أي تدريب إضافي.تظهر التجارب قدرة رائعة