ترغب بنشر مسار تعليمي؟ اضغط هنا

نظام الترجمة متعدد اللغات بجامعة ماستريخت على نطاق واسع ل WMT 2021

Maastricht University's Large-Scale Multilingual Machine Translation System for WMT 2021

600   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم تطوير نظام الترجمة الآلي متعدد اللغات لمهمة الترجمة متعددة اللغات متعددة اللغات المهمة متعددة اللغات في WMT 2021. بدء تشغيل نظام الأساس المحتمل، حققنا في العديد من التقنيات لتحسين جودة الترجمة على المجموعة الفرعية المستهدفة من اللغات.تمكنا من تحسين جودة الترجمة بشكل كبير من خلال تكييف النظام باتجاه المجموعة الفرعية المستهدفة من اللغات وتوليد بيانات اصطناعية باستخدام النموذج الأولي.التقنيات المطبقة بنجاح في الترجمة متعددة اللغز المزدوجة (E.G. التشابه العادي) كان لها تأثير بسيط فقط على أداء الترجمة النهائي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تصف هذه الورقة مشاركة جامعة ماستريخت في مسار الترجمة متعددة اللغات في IWSLT 2021.المهمة في هذه المسار هي بناء أنظمة ترجمة خطاب متعددة اللغات في اتجاهات تحت إشراف ومطلة الصفر.نظامنا الأساسي هو نموذج نهاية إلى نهاية يؤدي إلى نسخ الكلام والترجمة.نلاحظ أ ن التدريب المشترك للمهامتين مكملتين خاصة عندما تكون بيانات ترجمة الكلام نادرة.على المصدر والجانب المستهدف، نستخدم تكبير البيانات والملصقات الزائفة على التوالي لتحسين أداء أنظمتنا.نقدم أيضا تقنية كفرية تعمل باستمرار على تحسين جودة النسخ والترجمات.تظهر التجارب أن النظام المنتهي تنافسية مع نظيره المتتالي وخاصة في ظروف الطلقة الصفرية.
نقدم نتائج المهمة الأولى على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع.تتكون المهمة على التقييم المتعدد إلى العديد من النماذج الفردية عبر مجموعة متنوعة من اللغات المصدر والمستهدفة.هذا العام، تتألف المهمة على ثلاثة إعدادات مختلفة: (1) المهمة الصغي رة 1 (لغات أوروبا الوسطى / الجنوبية الشرقية)، (2) المهمة الصغيرة 2 (لغات جنوب شرق آسيا)، و (3) مهمة كاملة (كل 101 × 100 زوج أزواج).استخدمت جميع المهام DataSet Flores-101 كمعيار التقييم.لضمان طول العمر من مجموعة البيانات، لم يتم إصدار مجموعات الاختبار علنا وتم تقييم النماذج في بيئة خاضعة للرقابة على Dynabench.كان هناك ما مجموعه 10 فرق مشاركة للمهام، بما مجموعه 151 من العروض النموذجية المتوسطة و 13 نماذج نهائية.تظهر نتائج هذا العام تحسنا كبيرا على خطوط الأساس المعروفة مع +17.8 بلو ل Task-Task2، +10.6 للمهمة الكاملة و +3.6 للمهمة الصغيرة 1.
توضح هذه الورقة نظام الترجمة متعددة الاستخدامات على نطاق واسع ل WMT 2021. نشارك في المسار الصغير 2 في خمسة لغات جنوب شرق آسيا، والثلاثين الاتجاهات: الجاوية، الإندونيسية، الملايو، التاغالوغية، التاميل، الإنجليزية.نحن نستخدم أساسا إلى الأمام / الترجمة إلى الوراء، واختيار بيانات داخل المجال، وقطاع المعرفة، والضبط الجماعي التدريجي من الطراز المدرب مسبقا فلوريس 101.نجد أن الترجمة إلى الأمام / الخلفي يحسن بشكل كبير من نتائج الترجمة، واختيار البيانات والضبط الجمنيات التدريجية فعالة بشكل خاص أثناء مجال التكيف، في حين أن تقطير المعرفة يجلب تحسين أداء طفيف.أيضا، يستخدم متوسط المتوسط لتحسين أداء الترجمة بناء على هذه الأنظمة.يحقق نظامنا النهائي درجة بلو متوسط قدره 28.89 عبر ثلاثين اتجاهين في مجموعة الاختبار.
توضح هذه الورقة نهجنا للمهمة المشتركة على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع في المؤتمر السادس حول الترجمة الآلية (WMT-21).في هذا العمل، نهدف إلى بناء نظام ترجمة متعددة اللغات واحدا مع فرضية أن تمثيل عالمي عبر اللغة يؤدي إلى أداء ترجمة متع ددة اللغات بشكل أفضل.نحن نقدم استكشاف أساليب الترجمة الخلفي المختلفة من الترجمة الثنائية إلى الترجمة متعددة اللغات.يتم الحصول على أداء أفضل من خلال طريقة أخذ العينات المقيدة، والتي تختلف عن اكتشاف الترجمة الثنائية الثدية.علاوة على ذلك، نستكشف أيضا تأثير المفردات ومقدار البيانات الاصطناعية.والمثير للدهشة أن الحجم الأصغر من المفردات أداء أفضل، وتقدم بيانات اللغة الإنجليزية النائية واسعة النطاق تحسنا متواضعا.لقد أرسلنا إلى كل من المهام الصغيرة وتحقيق المركز الثاني.
في هذه الورقة، نصف تقديم فريق مشترك لبحوث Samsung Philippines-Konvergen AI لمهمة الترجمة متعددة اللغات متعددة اللغات WMT'21 - المسار الصغير 2. نقدم نموذج محول SEQ2SEQ قياسي إلى المهمة المشتركة دون أي حيل تدريب أو عمارة، تعتمد بشكل رئيسي على قوة تقنيا ت ما قبل البيانات الخاصة بنا لتعزيز الأداء.سجل طراز التقديم النهائي لدينا 22.92 متوسط بلو على مجموعة Flores-101 Devtest، وسجل 22.97 متوسط بلو على مجموعة الاختبارات الخفية للمسابقة، المرتبة السادسة بشكل عام.على الرغم من استخدام محول قياسي فقط، في المرتبة النموذجية المرتبة الأولى في الإندونيسية إلى الجاوية، مما يدل على المسائل المعالجة المسبقة للبيانات على قدم المساواة، إن لم تكن أكثر، من تقنيات النموذج المتطورة وتقنيات التدريب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا