ترغب بنشر مسار تعليمي؟ اضغط هنا

متواضع وحساسية نماذج بيرت توقع مرض الزهايمر من النص

Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text

292   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن فهم متانة وحساسية نماذج بيرت التي تتنبأ بمرض الزهايمر من النص أمر مهم لكلا نماذج تصنيف أفضل وفهم قدراتها وقيودها.في هذه الورقة، نقوم بتحليل كيفية تأثير كمية خاضعة للرقابة من التعديلات المرجوة وغير المرغوبة التي تؤثر على أداء بيرت.نظهر أن بيرت قوية للتغيرات اللغوية الطبيعية في النص.من ناحية أخرى، نظهر أن بيرت ليست حساسة لإزالة المعلومات المهمة سريريا من النص.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يرتبط مرض الزهايمر (الإعلان) بالعديد من التغييرات المميزة، ليس فقط في لغة الفرد ولكن أيضا في أنماط تفاعلية لاحظت في الحوار. تميل التغييرات الأكثر إرشادية لهذا النوع الأخير إلى أن تكون مرتبطة بأعمال الحوار النادرة نسبيا (DAS)، مثل المشاركين في التبادل ات والردود على أنواع معينة من الأسئلة. ومع ذلك، يركز معظم الأعمال الموجودة في العلامة في DA على تحسين الأداء المتوسط، وتحديد أولويات فئات أكثر تواترا؛ وبالتالي فإنه يعطي أداء ضعيفا على هذه الفصول الدراسية النادرة وليس مناسبا للتطبيق على تحليل الإعلانات. في هذه الورقة، نحقق في وضع علامات على وجه التحديد بالنسبة لفئة DAS النادرة، باستخدام نموذج Bilstm هرمي مع طرق مختلفة لإدماج المعلومات من الكلام السابق وعلامات التنمية في السياق. نظهر أن هذا يمكن أن يعطي أداء جيدا لفصول DA نادرة على كل من Corpus لوحة المفاتيح العامة (SWDA) ومجموعة بيانات محادثة محددة من الإعلانات، ومجموعة محادثة Carolinas (CCC)؛ وأن مخرجات Tagger ثم تساهم بمعلومات مفيدة لتمييز المرضى وبدون إعلان
تستفيد نماذج اللغة الكبيرة من التدريب بكمية كبيرة من النص غير المسبق، مما يمنحهم قدرات توليد بطلاقة ومتنوعة بشكل متزايد.ومع ذلك، فإن استخدام هذه النماذج لتوليد النص الذي يأخذ في الاعتبار السمات المستهدفة، مثل قطبية المعالم أو مواضيع محددة، لا يزال يم ثل تحديا.نقترح طريقة بسيطة ومرنة للسيطرة على جيل النص عن طريق محاذاة تمثيلات سمة Deventangled.على النقيض من الجهود الأخيرة التي يبذلها الجهود المبينة في تدريب تمييزي على توزيع مستوى الرمز المميز لسمة، نستخدم نفس البيانات لتعلم وظيفة المحاذاة لتوجيه نموذج اللغة غير المستخدمة مسبقا وغير الخاضعة للرقابة لإنشاء نصوص مع سمة الهدف دون تغييرالمعلمات نموذج اللغة الأصلية.نقوم بتقييم طريقتنا على توليد المعنويات والموضوع، وإظهار مكاسب أداء كبيرة على الطرق السابقة مع الاحتفاظ بالطلاقة والتنوع.
تحظى طرازات اللغة واسعة النطاق (LMS) في كورسورا هائلة من النص، مثل GPT-2، هي مولدات نصية مفتوحة قوية. ومع ذلك، نظرا لأن الفحص المنهجي الخاص بنا يكشف، فمن لا يزال يمثل تحديا لهذه النماذج لتوليد ممرات طويلة طويلة متماسكة من النص (على سبيل المثال، 1000 رمز)، خاصة عند ضبط النماذج بشكل جيد إلى المجال المستهدف على كائن صغير. تندرج أساليب التخطيط السابقة عند إيلاء إيناء نص طويل في المجالات المختلفة. للتغلب على القيود، نقترح طريقة بسيطة ولكنها فعالة لتوليد النص بطريقة تقدمية، مستوحاة من خلال توليد الصور من أدنى مستوى إلى دقة عالية. تقوم طريقةنا أولا بإنتاج الكلمات الرئيسية للمحتوى الخاص بالمجال ومن ثم تقوم بتطريصها تدريجيا في مقاطع كاملة في مراحل متعددة. يسمح التصميم البسيط لنهجنا الاستفادة من LMS المحدد في كل مرحلة وتكييف فعال مع أي مجال مستهدف معين فقط مجموعة صغيرة من الأمثلة. نقوم بإجراء دراسة تجريبية شاملة مع مجموعة واسعة من مقاييس التقييم، وإظهار أن نهجنا يحسن بشكل كبير على LMS الكبيرة التي تم ضبطها بشكل كبير وأساليب التخطيط والمنشدة المختلفة من حيث الجودة وكفاءة العينات. يتحقق التقييم البشري أيضا أن أجيال النماذج لدينا أكثر متماسكة.
نماذج اللغة واسعة النطاق مثل GPT-3 هي متعلمين بقلة قليلة، مما يتيح لهم السيطرة عليها عبر مطالبات النص الطبيعي. أبلغ الدراسات الحديثة أن التصنيف المباشر الفوري يزيل الحاجة إلى ضبط الدقيقة ولكن يفتقر إلى إمكانية التوسع للبيانات والاستدلال. تقترح هذه ال ورقة تقنية تكبير بيانات جديدة ترفع نماذج لغة واسعة النطاق لتوليد عينات نصية واقعية من مزيج من العينات الحقيقية. نقترح أيضا استخدام الملصقات الناعمة المتوقعة من النماذج اللغوية، وتقطير المعرفة بفعالية من نماذج اللغة واسعة النطاق وإنشاء اضطرابات نصية في وقت واحد. نقوم بإجراء تجارب تكبير البيانات على مهام التصنيف المتنوعة وإظهار أن طريقتنا تتفوق بشكل كبير على أساليب تكبير النص الحالية. نقوم أيضا بإجراء تجارب في معيارنا المقترح حديثا لإظهار أن تأثير تكبير لا يعزى فقط إلى الحفظ. مزيد من دراسات الاجتثاث والتحليل النوعي توفر المزيد من الأفكار في نهجنا.
عادة ما يتم تدريب نماذج اللغات الحالية على استخدام مخطط للإشراف على الذات، حيث يركز التركيز الرئيسي على التعلم في كلمة البرنامج أو مستوى الجملة.ومع ذلك، كان هناك تقدم محدود في توليد تمثيلات مفيدة على مستوى الخطاب.في هذا العمل، نقترح استخدام الأفكار م ن نظرية الترميز التنبؤية لزيادة نماذج اللغة ذات طراز بيرت مع آلية تسمح لهم بتعلم تمثيلات مناسبة على مستوى الخطاب.نتيجة لذلك، يكون نهجنا المقترح قادرا على التنبؤ بالأحكام المستقبلية باستخدام اتصالات واضحة من أعلى إلى أسفل تعمل في الطبقات المتوسطة للشبكة.من خلال تجربة معايير مصممة لتقييم المعرفة المتعلقة بالحبال باستخدام تمثيلات الجملة المدربة مسبقا، نوضح أن نهجنا يحسن الأداء في 6 من أصل 11 مهام من خلال التميز في كشف علاقة الخطاب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا