ﻻ يوجد ملخص باللغة العربية
We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that the minimal universality-generating encodings of one logical qubit are based on three physical qubits. We show how to generate both single- and two-qubit operations on the logical qubits, using suitably timed conjugating operations derived from analysis of the commutator algebra. The timing of the operations is seen to be crucial in allowing simplification of the gate sequences for the generalized Hamiltonian to forms similar to that derived previously for the symmetric (XY) anisotropic exchange Hamiltonian. The total number of operations needed for a controlled-Z gate up to local transformations is five. A scalable architecture is proposed.
We study the quantum computational power of a generic class of anisotropic solid state Hamiltonians. A universal set of encoded logic operations are found which do away with difficult-to-implement single-qubit gates in a number of quantum computer pr
We revisit the question of universality in quantum computing and propose a new paradigm. Instead of forcing a physical system to enact a predetermined set of universal gates (e.g., single-qubit operations and CNOT), we focus on the intrinsic ability
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized o
This paper is a natural continuation of the previous paper J.Phys. A: Math.Theor. 44 (2011) 425204, arXiv 0907.1736 [quant-ph] where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant $alphageq-1/4$ were construct
The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which