ﻻ يوجد ملخص باللغة العربية
We revisit the question of universality in quantum computing and propose a new paradigm. Instead of forcing a physical system to enact a predetermined set of universal gates (e.g., single-qubit operations and CNOT), we focus on the intrinsic ability of a system to act as a universal quantum computer using only its naturally available interactions. A key element of this approach is the realization that the fungible nature of quantum information allows for universal manipulations using quantum information encoded in a subspace of the full system Hilbert space, as an alternative to using physical qubits directly. Starting with the interactions intrinsic to the physical system, we show how to determine the possible universality resulting from these interactions over an encoded subspace. We outline a general Lie-algebraic framework which can be used to find the encoding for universality and give several examples relevant to solid-state quantum computing.
We consider the estimation of a Hamiltonian parameter of a set of highly photosensitive samples, which are damaged after a few photons $N_{rm abs}$ are absorbed, for a total time $T$. The samples are modelled as a two mode photonic system, where phot
We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that
One of the most promising applications of quantum computing is simulating quantum many-body systems. However, there is still a need for methods to efficiently investigate these systems in a native way, capturing their full complexity. Here, we propos
The primary resource for quantum computation is Hilbert-space dimension. Whereas Hilbert space itself is an abstract construction, the number of dimensions available to a system is a physical quantity that requires physical resources. Avoiding a dema
We implement several quantum algorithms in real five-qubit superconducting quantum processor IBMqx4 to perform quantum computation of the dynamics of spin-1/2 particles interacting directly and indirectly through the boson field. Particularly, we foc