ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum three body Coulomb problem in two dimensions

112   0   0.0 ( 0 )
 نشر من قبل Laurent Hilico
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the three-body Coulomb problem in two dimensions and show how to calculate very accurately its quantum properties. The use of a convenient set of coordinates makes it possible to write the Schr{o}dinger equation only using annihilation and creation operators of four harmonic oscillators, coupled by various terms of degree up to twelve. We analyse in details the discrete symmetry properties of the eigenstates. The energy levels and eigenstates of the two-dimensional helium atom are obtained numerically, by expanding the Schr{o}dinger equation on a convenient basis set, that gives sparse banded matrices, and thus opens up the way to accurate and efficient calculations. We give some very accurate values of the energy levels of the first bound Rydberg series. Using the complex coordinate method, we are also able to calculate energies and widths of doubly excited states, i.e. resonances above the first ionization threshold. For the two-dimensional $H^{-}$ ion, only one bound state is found.



قيم البحث

اقرأ أيضاً

103 - Z. Papp 1997
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s how perfect agreements with existing low-energy $n-d$ and $p-d$ scattering calculations.
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-S chwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the $e^++H$ system both below and above the $H(n=2)$ threshold. We found excellent agreements with previous calculations in most cases.
We show that quantum absorption refrigerators, which has traditionally been studied as of three qubits, each of which is connected to a thermal reservoir, can also be constructed by using three qubits and two thermal baths, where two of the qubits, i ncluding the qubit to be cooled, are connected to a common bath. With a careful choice of the system, bath, and qubit-bath interaction parameters within the Born-Markov and rotating wave approximations, one of the qubits attached to the common bath achieves a cooling in the steady-state. We observe that the proposed refrigerator may also operate in a parameter regime where no or negligible steady-state cooling is achieved, but there is considerable transient cooling. The steady-state temperature can be lowered significantly by an increase in the strength of the few-body interaction terms existing due to the use of the common bath in the refrigerator setup, proving the importance of the two-bath setup over the conventional three-bath construction. The proposed refrigerator built with three qubits and two baths is shown to provide steady-state cooling for both Markovian qubit-bath interactions between the qubits and canonical bosonic thermal reservoirs, and a simpler reset model for the qubit-bath interactions.
79 - Z. Papp , S. L. Yakovlev 1999
For solving the $2to 2,3$ three-body Coulomb scattering problem the Faddeev-Merkuriev integral equations in discrete Hilbert-space basis representation are considered. It is shown that as far as scattering amplitudes are considered the error caused b y truncating the basis can be made arbitrarily small. By this truncation also the Coulomb Greens operator is confined onto the two-body sector of the three-body configuration space and in leading order can be constructed with the help of convolution integrals of two-body Greens operators. For performing the convolution integral an integration contour is proposed that is valid for all energies, including bound-state as well as scattering energies below and above the three-body breakup threshold.
77 - R. Combescot 2017
We present a general approach for the solution of the three-body problem for a general interaction, and apply it to the case of the Coulomb interaction. This approach is exact, simple and fast. It makes use of integral equations derived from the cons ideration of the scattering properties of the system. In particular this makes full use of the solution of the two-body problem, the interaction appearing only through the corresponding known T-matrix. In the case of the Coulomb potential we make use of a very convenient expression for the T-matrix obtained by Schwinger. As a check we apply this approach to the well-known problem of the Helium atom ground state and obtain a perfect numerical agreement with the known result for the ground state energy. The wave function is directly obtained from the corresponding solution. We expect our method to be in particular quite useful for the trion problem in semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا