ترغب بنشر مسار تعليمي؟ اضغط هنا

The three-body Coulomb scattering problem in discrete Hilbert-space basis representation

80   0   0.0 ( 0 )
 نشر من قبل Papp Zoltan
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For solving the $2to 2,3$ three-body Coulomb scattering problem the Faddeev-Merkuriev integral equations in discrete Hilbert-space basis representation are considered. It is shown that as far as scattering amplitudes are considered the error caused by truncating the basis can be made arbitrarily small. By this truncation also the Coulomb Greens operator is confined onto the two-body sector of the three-body configuration space and in leading order can be constructed with the help of convolution integrals of two-body Greens operators. For performing the convolution integral an integration contour is proposed that is valid for all energies, including bound-state as well as scattering energies below and above the three-body breakup threshold.



قيم البحث

اقرأ أيضاً

103 - Z. Papp 1997
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s how perfect agreements with existing low-energy $n-d$ and $p-d$ scattering calculations.
72 - Z. Papp 1998
The set of Faddeev and Lippmann--Schwinger integral equations for three-body systems involving Coulomb interactions deduced from a ``three-potential picture are shown to be compact for all energies and a method of solution is given.
72 - A. Bahaoui 2002
We report on the first calculation of the scattering length A_{K^-d} based on a relativistic three-body approach where the two-body input amplitudes coupled to the Kbar N channels have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes,based on the fixed center approximation, considered as a good approximation for a loosely bound target, and for which we find significant deviations from the exact three-body results. Effects of the hyperon-nucleon interaction, and deuteron $D$-wave component are also evaluated.
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-S chwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the $e^++H$ system both below and above the $H(n=2)$ threshold. We found excellent agreements with previous calculations in most cases.
A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attr active inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalisation of the three-body interactions, with the renormalisation-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا