ﻻ يوجد ملخص باللغة العربية
We show that quantum absorption refrigerators, which has traditionally been studied as of three qubits, each of which is connected to a thermal reservoir, can also be constructed by using three qubits and two thermal baths, where two of the qubits, including the qubit to be cooled, are connected to a common bath. With a careful choice of the system, bath, and qubit-bath interaction parameters within the Born-Markov and rotating wave approximations, one of the qubits attached to the common bath achieves a cooling in the steady-state. We observe that the proposed refrigerator may also operate in a parameter regime where no or negligible steady-state cooling is achieved, but there is considerable transient cooling. The steady-state temperature can be lowered significantly by an increase in the strength of the few-body interaction terms existing due to the use of the common bath in the refrigerator setup, proving the importance of the two-bath setup over the conventional three-bath construction. The proposed refrigerator built with three qubits and two baths is shown to provide steady-state cooling for both Markovian qubit-bath interactions between the qubits and canonical bosonic thermal reservoirs, and a simpler reset model for the qubit-bath interactions.
Quantum phase transitions occur at zero temperature, when the ground state of a Hamiltonian undergoes a qualitative change as a function of a control parameter. We consider a particularly interesting system with competing one-, two- and three-body in
We propose a three-qubit setup for the implementation of a variety of quantum thermal machines where all heat fluxes and work production can be controlled. An important configuration that can be designed is that of an absorption refrigerator, extract
We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-linearly coupled resonators. Considering ZZ interaction be
We put forth, theoretically and experimentally, the possibility of drastically cooling down (purifying) thermal ensembles (baths) of solid-state spins via a sequence of projective measurements of a probe spin that couples to the bath in an arbitrary
We study the three-body Coulomb problem in two dimensions and show how to calculate very accurately its quantum properties. The use of a convenient set of coordinates makes it possible to write the Schr{o}dinger equation only using annihilation and c