ﻻ يوجد ملخص باللغة العربية
A new theoretical approach to the description of the attosecond streaking measurements of atomic photoionization is presented. It is a fully quantum mechanical description based on numerical solving of the time-dependent Schroedinger equation which includes the atomic field as well as the fields of the XUV and IR pulses. Also a simple semiempirical description based on sudden approximation is suggested which agrees very well with the exact solution.
Tunnelling, one of the key features of quantum mechanics, ignited an ongoing debate about the value, meaning and interpretation of tunnelling time. Until recently the debate was purely theoretical, with the process considered to be instantaneous for
We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time
Based on numerical solutions of the time-dependent Schrodinger equation for either one or two active electrons, we propose a method for observing instantaneous level shifts in an oscillating strong infrared (IR) field in time, using a single tunable
Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconducto
Highly polarizable metastable He* ($mathrm{2^3S}$) and Ne* ($mathrm{2^3P}$) atoms have been diffracted from a 100 nm period silicon nitride transmission grating and the van der Waals coefficients $C_3$ for the interaction of the excited atoms with th