ترغب بنشر مسار تعليمي؟ اضغط هنا

Attosecond streaking of photoelectron emission from disordered solids

91   0   0.0 ( 0 )
 نشر من قبل William Okell
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface.



قيم البحث

اقرأ أيضاً

In this paper we present proof of principle experiments of an optical gating concept for free electrons. We demonstrate a temporal resolution of 1.2+-0.3 fs via energy and transverse momentum modulation as a function of time. The scheme is based on t he synchronous interaction between electrons and the near-field mode of a dielectric nano-grating excited by a femtosecond laser pulse with an optical period duration of 6.5 fs. The sub-optical cycle resolution demonstrated here is promising for use in laser-driven streak cameras for attosecond temporal characterization of bunched particle beams as well as time-resolved experiments with free-electron beams. We expect that 10 as temporal resolution will be achieved in the near future using such a scheme.
We report on the global temporal pulse characteristics of individual harmonics in an attosecond pulse train by means of photo-electron streaking in a strong low-frequency transient. The scheme allows direct retrieval of pulse durations and first orde r chirp of individual harmonics without the need of temporal scanning. The measurements were performed using an intense THz field generated by tilted phase front technique in LiNbO_3 . Pulse properties for harmonics of order 23, 25 and 27 show that the individual pulse durations and linear chirp are decreasing by the harmonic order.
First time-resolved photoemission experiments employing attosecond streaking of electrons emitted by an XUV pump pulse and probed by a few-cycle NIR pulse found a time delay of about 100 attoseconds between photoelectrons from the conduction band and those from the 4f core level of tungsten. We present a microscopic simulation of the emission time and energy spectra employing a classical transport theory. Emission spectra and streaking images are well reproduced. Different contributions to the delayed emission of core electrons are identified: larger emission depth, slowing down by inelastic scattering processes, and possibly, energy dependent deviations from the free-electron dispersion. We find delay times near the lower bound of the experimental data.
The reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) is one of the most widely used techniques for resolving ultrafast electronic dynamics in atomic and molecular systems. As it relies on the interference of pho to-electrons in vacuum, similar interference has never been contemplated in the bulk of crystals. Here we show that the interference of two-photon transitions can be recorded directly in the bulk of solids and read out with standard angle-resolved photo-emission spectroscopy. The phase of the RABBIT beating in the photoelectron spectra coming from the bulk of solids is sensitive to the relative phase of the Berry connection between bands and it experiences a shift of $pi$ as one of the quantum paths crosses a band. For resonant interband transitions, the amplitude of the RABBIT oscillation decays as the pump and probe pulses are separated in time due to electronic decoherence, providing a simple interferometric method to extract dephasing times.
We study theoretically the photoelectron emission in noble gases using plasmonic enhanced near-fields. We demonstrate that these fields have a great potential to generate high energy electrons by direct mid-infrared laser pulses of the current femtos econd oscillator. Typically, these fields appear in the surroundings of plasmonic nanostructures, having different geometrical shape such as bow-ties, metallic waveguides, metal nanoparticles and nanotips, when illuminated by a short laser pulse. In here, we consider metal nanospheres, in which the spatial decay of the near-field of the isolated nanoparticle can be approximated by an exponential function according to recent attosecond streaking measurements. We establish that the strong nonhomogeneous character of the enhanced near-field plays an important role in the above threshold ionization (ATI) process and leads to a significant extension in the photoelectron spectra. In this work, we employ the time dependent Schrodinger equation in reduced dimensions to calculate the photoelectron emission of xenon atoms in such enhanced near-field. Our findings are supported by classical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا