ﻻ يوجد ملخص باللغة العربية
We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fanos theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate emph{ab initio} calculations, or be extracted from few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association to a weak IR probe, obtaining results in quantitative agreement with those from accurate emph{ab initio} simulations. In particular, we show that: i) Use of finite pulses results in a homogeneous red shift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity of intermediate autoionizing states; ii) The phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or $2pi$ overall variation.
We present an analytical model that characterizes two-photon transitions in the presence of autoionising states. We applied this model to interpret resonant RABITT spectra, and show that, as a harmonic traverses a resonance, the phase of the sideband
We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated
A new theoretical approach to the description of the attosecond streaking measurements of atomic photoionization is presented. It is a fully quantum mechanical description based on numerical solving of the time-dependent Schroedinger equation which i
We theoretically explore a variant of RABBITT spectroscopy in which the attosecond-pulse train comprises isolated pairs of consecutive harmonics of the fundamental infrared probe frequency. In this scheme, one-photon and two-photon amplitudes interfe
We investigate the interaction of Xe with isolated attosecond XUV pulses. Specifically, we calculate the ion yields and determine the pathways leading to the formation of ionic charged states up to Xe$^{5+}$. To do so, in our formulation we account f