ﻻ يوجد ملخص باللغة العربية
We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the shape of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and some experimental findings concerning various phase transitions in the asymptotic diagrams, focusing on evaluating the limiting threshold cutoff for existence of the spirals that characterize many excitable media. For mathematical expediency our main results are formulated in terms of spo(p), the cutoff for existence of stable periodic objects that arise as spiral cores.
Given a (finite) string of zeros and ones, we report a way to determine if the number of ones is less than, greater than, or equal to a prescribed number by applying two sets of cellular automaton rules in succession. Thus, we solve the general densi
A transition from asymmetric to symmetric patterns in time-dependent extended systems is described. It is found that one dimensional cellular automata, started from fully random initial conditions, can be forced to evolve into complex symmetrical pat
There exists an index theory to classify strictly local quantum cellular automata in one dimension. We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reducti
A method of quantization of classical soliton cellular automata (QSCA) is put forward that provides a description of their time evolution operator by means of quantum circuits that involve quantum gates from which the associated Hamiltonian describin
A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represent