ترغب بنشر مسار تعليمي؟ اضغط هنا

Failover in cellular automata

138   0   0.0 ( 0 )
 نشر من قبل Shailesh Kumar Jagadeesan
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.



قيم البحث

اقرأ أيضاً

Gauge-invariance is a fundamental concept in Physics---known to provide mathematical justification for the fundamental forces. In this paper, we provide discrete counterparts to the main gauge theoretical concepts directly in terms of Cellular Automa ta. More precisely, the notions of gauge-invariance and gauge-equivalence in Cellular Automata are formalized. A step-by-step gauging procedure to enforce this symmetry upon a given Cellular Automaton is developed, and three examples of gauge-invariant Cellular Automata are examined.
A method of quantization of classical soliton cellular automata (QSCA) is put forward that provides a description of their time evolution operator by means of quantum circuits that involve quantum gates from which the associated Hamiltonian describin g a quantum chain model is constructed. The intrinsic parallelism of QSCA, a phenomenon first known from quantum computers, is also emphasized.
Gauge-invariance is a mathematical concept that has profound implications in Physics---as it provides the justification of the fundamental interactions. It was recently adapted to the Cellular Automaton (CA) framework, in a restricted case. In this p aper, this treatment is generalized to non-abelian gauge-invariance, including the notions of gauge-equivalent theories and gauge-invariants of configurations
In this paper we study the family of freezing cellular automata (FCA) in the context of asynchronous updating schemes. A cellular automaton is called freezing if there exists an order of its states, and the transitions are only allowed to go from a l ower to a higher state. A cellular automaton is asynchronous if at each time-step only one cell is updated. Given configuration, we say that a cell is unstable if there exists a sequential updating scheme that changes its state. In this context, we define the problem AsyncUnstability, which consists in deciding if a cell is unstable or not. In general AsyncUnstability is in NP, and we study in which cases we can solve the problem by a more efficient algorithm. We begin showing that AsyncUnstability is in NL for any one-dimensional FCA. Then we focus on the family of life-like freezing CA (LFCA), which is a family of two-dimensional two-state FCA that generalize the freezing version of the game of life, known as life without death. We study the complexity of AsyncUnstability for all LFCA in the triangular and square grids, showing that almost all of them can be solved in NC, except for one rule for which the problem is NP-complete.
A novel, information-based classification of elementary cellular automata is proposed that circumvents the problems associated with isolating whether complexity is in fact intrinsic to a dynamical rule, or if it arises merely as a product of a comple x initial state. Transfer entropy variations processed by the system split the 256 elementary rules into three information classes, based on sensitivity to initial conditions. These classes form a hierarchy such that coarse-graining transitions observed among elementary cellular automata rules predominately occur within each information- based class, or much more rarely, down the hierarchy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا