ترغب بنشر مسار تعليمي؟ اضغط هنا

Classifying Rational Densities Using Two One-Dimensional Cellular Automata

68   0   0.0 ( 0 )
 نشر من قبل Chau Hoi Fung
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a (finite) string of zeros and ones, we report a way to determine if the number of ones is less than, greater than, or equal to a prescribed number by applying two sets of cellular automaton rules in succession. Thus, we solve the general density classification problem using cellular automaton.



قيم البحث

اقرأ أيضاً

In this paper, we analyze the algebraic structure of some null boundary as well as some periodic boundary 2-D Cellular Automata (CA) rules by introducing a new matrix multiplication operation using only AND, OR instead of most commonly used AND, EX-O R. This class includes any CA whose rule, when written as an algebra, is a finite Abelean cyclic group in case of periodic boundary and a finite commutative cyclic monoid in case of null boundary CA respectively. The concept of 1-D Multiple Attractor Cellular Automata (MACA) is extended to 2-D. Using the family of 2-D MACA and the finite Abelian cyclic group, an efficient encompression algorithm is proposed for binary images.
We give a one-dimensional quantum cellular automaton (QCA) capable of simulating all others. By this we mean that the initial configuration and the local transition rule of any one-dimensional QCA can be encoded within the initial configuration of th e universal QCA. Several steps of the universal QCA will then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA. The encoding is linear and hence does not carry any of the cost of the computation. We do this in two flavours: a weak one which requires an infinite but periodic initial configuration and a strong one which needs only a finite initial configuration. KEYWORDS: Quantum cellular automata, Intrinsic universality, Quantum computation.
40 - Richard Durrett 1993
We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the shape of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and some experimental findings concerning various phase transitions in the asymptotic diagrams, focusing on evaluating the limiting threshold cutoff for existence of the spirals that characterize many excitable media. For mathematical expediency our main results are formulated in terms of spo(p), the cutoff for existence of stable periodic objects that arise as spiral cores.
Cellular Automaton (CA) and an Integral Value Transformation (IVT) are two well established mathematical models which evolve in discrete time steps. Theoretically, studies on CA suggest that CA is capable of producing a great variety of evolution pat terns. However computation of non-linear CA or higher dimensional CA maybe complex, whereas IVTs can be manipulated easily. The main purpose of this paper is to study the link between a transition function of a one-dimensional CA and IVTs. Mathematically, we have also established the algebraic structures of a set of transition functions of a one-dimensional CA as well as that of a set of IVTs using binary operations. Also DNA sequence evolution has been modelled using IVTs.
In this paper, we explore the two-dimensional behavior of cellular automata with shuffle updates. As a test case, we consider the evacuation of a square room by pedestrians modeled by a cellular automaton model with a static floor field. Shuffle upda tes are characterized by a variable associated to each particle and called phase, that can be interpreted as the phase in the step cycle in the frame of pedestrian flows. Here we also introduce a dynamics for these phases, in order to modify the properties of the model. We investigate in particular the crossover between low- and high-density regimes that occurs when the density of pedestrians increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit. Eventually we discuss the relevance of these results for pedestrians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا