ﻻ يوجد ملخص باللغة العربية
A cranked shell model approach for the description of rotational bands in $Napprox Z$ nuclei is formulated. The isovector neutron-proton pairing is taken into account explicitly. The concept of spontaneous breaking and subsequent restoration of the isospin symmetry turns out to be crucial. The general rules to construct the near yrast-spectra for rotating nuclei are presented. For the model case of particles in a j-shell, it is shown that excitation spectra and the alignment processes are well described as compared to the exact shell model calculation. Realistic cranked shell model calculations are able to describe the experimental spectra of $^{72,73}$Kr and $^{74}$Rb isotopes.
Recently, we have applied for the first time the angular momentum and isospin projected nuclear density functional theory to calculate the isospin-symmetry breaking (ISB) corrections to the superallowed beta-decay. With the calculated set of the ISB
We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have be
For natural parity states of several odd-A nuclei a comparison of shell model calculations in the full pf configuration space with the Nilsson diagram and particle-rotor predictions shows that prolate strong coupling applies at low excitation energy,
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density function
Experimentally observed ground state band based on the $1/2^{-}[521]$ Nilsson state and the first exited band based on the $7/2^{-}[514]$ Nilsson state in the odd-$Z$ nucleus $^{255}$Lr are studied by the cranked shell model (CSM) with the paring cor