ﻻ يوجد ملخص باللغة العربية
Experimentally observed ground state band based on the $1/2^{-}[521]$ Nilsson state and the first exited band based on the $7/2^{-}[514]$ Nilsson state in the odd-$Z$ nucleus $^{255}$Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations being performed on these rotational bands. Both the experimental kinematic and dynamic moment of inertia ($mathcal{J}^{(1)}$ and $mathcal{J}^{(2)}$) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia $mathcal{J}^{(1)}$ with the experimental ones extracted from different spin assignments, the spin $17/2^{-}rightarrow13/2^{-}$ is assigned to the lowest-lying $196.6(5)$ keV transition of the $1/2^{-}[521]$ band, and $15/2^{-}rightarrow11/2^{-}$ to the $189(1)$ keV transition of the $7/2^{-}[514]$ band, respectively. The proton $N=7$ major shell is included in the calculations. The intruder of the high$-j$ low$-Omega$ orbitals $1j_{15/2}$ $ (1/2^{-}[770])$ at the high spin leads to the band-crossing at $hbaromegaapprox0.20$ ($hbaromegaapprox0.25$) MeV for the $7/2^{-}[514]$ $alpha=-1/2$ ($alpha=+1/2$) band, and at $hbaromegaapprox0.175$ MeV for the $1/2^{-}[521]$ $alpha=-1/2$ band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.
The particle-number conserving (PNC) method in the framework of cranked shell model (CSM) is developed to deal with the reflection-asymmetric nuclear system by applying the $S_x$ symmetry. Based on an octupole-deformed Nilsson potential, the alternat
The recently observed two and four-quasiparticle high-spin rotational bands in the odd-odd nuclei $^{166, 168, 170, 172}$Re are investigated using the cranked shell model with pairing correlations treated by a particle-number conserving method. The e
The newly observed isomer and ground-state band in the odd-Z neutron-rich rare-earth nucleus $^{163}$Eu are investigated by using the cranked shell model (CSM) with pairing treated by the particle-number conserving (PNC) method. This is the first tim
A cranked shell model approach for the description of rotational bands in $Napprox Z$ nuclei is formulated. The isovector neutron-proton pairing is taken into account explicitly. The concept of spontaneous breaking and subsequent restoration of the i
We calculate the isospin-mixing parameter for several Tz=-1, Tz=0 and Tz=1 nuclei from Mg to Sn in the particle-number conserving Higher Tamm-Dancoff approach taking into account the pairing correlations. In particular we investigate the role of the