ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin-symmetry breaking in masses of $Nsimeq Z$ nuclei

97   0   0.0 ( 0 )
 نشر من قبل Pawe{\\l} B\\k{a}czyk
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the $T=frac12$ doublets and $T=1$ triplets, and TDEs for the $T=1$ triplets. Relative strengths of the obtained isospin-symmetry-breaking terms {em are not} consistent with the differences in the $NN$ scattering lengths, $a_{nn}$, $a_{pp}$, and $a_{np}$. Based on low-energy experimental data, it seems thus impossible to delineate the strong-force ISB effects from beyond-mean-field Coulomb-energy corrections.



قيم البحث

اقرأ أيضاً

136 - M. Rafalski , W. Satula 2011
Recently, we have applied for the first time the angular momentum and isospin projected nuclear density functional theory to calculate the isospin-symmetry breaking (ISB) corrections to the superallowed beta-decay. With the calculated set of the ISB corrections we found |V_{ud}|=0.97447(23) for the leading element of the Cabibbo-Kobayashi-Maskawa matrix. This is in nice agreement with both the recent result of Towner and Hardy [Phys. Rev. {bf C77}, 025501 (2008)] and the central value deduced from the neutron decay. In this work we extend our calculations of the ISB corrections covering all superallowed transitions A,I^pi=0^+,T=1,T_z rightarrow A,I^pi=0^+,T=1,T_z+1 with T_z =-1,0 and A ranging from 10 to 74.
In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, w e investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.
An exactly solvable sp(4) algebraic approach extends beyond the traditional isospin conserving nuclear interaction to bring forward effects of isospin symmetry breaking and isospin mixing resulting from a two-body nuclear interaction that includes pr oton-neutron (pn) and like-particle isovector pairing correlations plus significant isoscalar pn interactions. The model yields an estimate for the extent to which isobaric analog 0+ states in light and medium mass nuclei may mix with one another and reveals possible, but still extremely weak, non-analog beta-decay transitions.
79 - K. Tsushima CSSM 1999
The binding energy differences of the valence proton and neutron of the mirror nuclei, $^{15}$O -- $^{15}$N, $^{17}$F -- $^{17}$O, $^{39}$Ca -- $^{39}$K and $^{41}$Sc -- $^{41}$Ca, are calculated using the quark-meson coupling (QMC) model. The calcul ation involves nuclear structure and shell effects explicitly. It is shown that binding energy differences of a few hundred keV arise from the strong interaction, even after subtracting all electromagnetic corrections. The origin of these differences may be ascribed to the charge symmetry breaking effects set in the strong interaction through the u and d current quark mass difference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا