ﻻ يوجد ملخص باللغة العربية
We extend a new treatment proposed for two-nucleon (2N) and three-nucleon (3N) bound states to 2N scattering. This technique takes momentum vectors as variables, thus, avoiding partial wave decomposition, and handles spin operators analytically. We apply the general operator structure of a nucleon-nucleon (NN) potential to the NN T-matrix, which becomes a sum of six terms, each term being scalar products of spin operators and momentum vectors multiplied with scalar functions of vector momenta. Inserting this expansions of the NN force and T-matrix into the Lippmann-Schwinger equation allows to remove the spin dependence by taking traces and yields a set of six coupled equations for the scalar functions found in the expansion of the T-matrix.
We compare results from the traditional partial wave treatment of deuteron electro-disintegration with a new approach that uses three dimensional formalism. The new framework for the two-nucleon (2N) system using a complete set of isospin - spin stat
Euler angles determining rotations of a system as a whole are conveniently separated in three-particle basis functions. Analytic integration of matrix elements over Euler angles is done in a general form. Results for the Euler angle integrated matrix
Recently a formalism for a direct treatment of the Faddeev equation for the three-nucleon bound state in three dimensions has been proposed. It relies on an operator representation of the Faddeev component in the momentum space and leads to a finite
On the basis of the Faddeev integral equations method and the Watson- Feshbach concept of the effective (optical) interaction potential, the first fully consistent three-body approach to the description of the penetration of a charged particle throug
Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches this procedure does not involve the use of delta-function constraints on the relative fou