ﻻ يوجد ملخص باللغة العربية
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
Casimir and Casimir-Polder repulsion have been known for more than 50 years. The general Lifshitz configuration of parallel semi-infinite dielectric slabs permits repulsion if they are separated by a dielectric fluid that has a value of permittivity
We present a scheme for obtaining stable Casimir suspension of dielectric nontouching objects immersed in a fluid, validated here in various geometries consisting of ethanol-separated dielectric spheres and semi-infinite slabs. Stability is induced b
We investigate the Dirichlet-scalar equivalent of Casimir-Polder forces between an atom and a surface with arbitrary uniaxial corrugations. The complexity of the problem can be reduced to a one-dimensional Greens function equation along the corrugati
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric
Electromagnetism in substance is characterized by permittivity (dielectric constant) and permeability (magnetic permeability). They describe the substance property {it effectively}. We present a {it geometric} approach to it. Some models are presente