ترغب بنشر مسار تعليمي؟ اضغط هنا

On possibility of realization of the phenomena of complex analytic dynamics in physical systems. Novel mechanism of the synchronization loss in coupled period-doubling systems

285   0   0.0 ( 0 )
 نشر من قبل Olga. B. Isaeva
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of realization of the phenomena of complex analytic dynamics for the realistic physical models are investigated. Observation of the Mandelbrot and Julia sets in the parameter and phase spaces both for the discrete maps and non-autonomous continuous systems is carried out. For these purposes, the method, based on consideration of coupled systems, demonstrating period-doubling cascade is suggested. Novel mechanism of synchronization loss in coupled systems corresponded to the dynamical behavior intrinsic to the complex analytic maps is offered.



قيم البحث

اقرأ أيضاً

According to the method, suggested in our previous work (nlin/0509012) and based on the consideration of the specially coupled systems, the possibility of physical realization of the phenomena of complex analytic dynamics (such as Mandelbrot and Juli a sets) is discussed. It is shown, that unlike the case of discrete maps or differential systems with periodic driving, investigated in mentioned work, there are some difficulties in attempts to obtain the Mandelbrot set for the coupled autonomous continuous systems. A system of coupled autonomous R{o}ssler oscillators is considered as an example.
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). T he idea is based on a turn-by-turn transfer of the excitation from one subsystem to another (S.P.~Kuznetsov, Phys.~Rev.~Lett. bf 95 rm, 2005, 144101) accompanied with appropriate nonlinear transformation of the complex amplitude of the oscillations in the course of the process. Analytic and numerical studies are performed. Special attention is paid to an analysis of the violation of the applicability of the slow amplitude method with the decrease in the ratio of the period of the excitation transfer to the basic period of the oscillations. The main effect is the rotation of the Mandelbrot-like set in the complex parameter plane; one more effect is the destruction of subtle small-scale fractal structure of the set due to the presence of non-analytic terms in the complex amplitude equations.
The model system manifesting phenomena peculiar to complex analytic maps is offered. The system is a non-autonomous ring cavity with nonlinear elements and filters,
Recently, a novel mixed-synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators. In mixed-synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified the occurrence of mixed-synchronization states in coupled counter-rotating chaotic piecewise Rossler oscillator. Analytical discussion on approximate stability analysis and numerical confirmation on the experimentally observed behavior is also given.
Zero-lag synchronization (ZLS) is achieved in a very restricted mutually coupled chaotic systems, where the delays of the self-coupling and the mutual coupling are identical or fulfil some restricted ratios. Using a set of multiple self-feedbacks we demonstrate both analytically and numerically that ZLS is achieved for a wide range of mutual delays. It indicates that ZLS can be achieved without the knowledge of the mutual distance between the communicating partners and has an important implication in the possible use of ZLS in communications networks as well as in the understanding of the emergence of such synchronization in the neuronal activities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا