ﻻ يوجد ملخص باللغة العربية
The possibility of realization of the phenomena of complex analytic dynamics for the realistic physical models are investigated. Observation of the Mandelbrot and Julia sets in the parameter and phase spaces both for the discrete maps and non-autonomous continuous systems is carried out. For these purposes, the method, based on consideration of coupled systems, demonstrating period-doubling cascade is suggested. Novel mechanism of synchronization loss in coupled systems corresponded to the dynamical behavior intrinsic to the complex analytic maps is offered.
According to the method, suggested in our previous work (nlin/0509012) and based on the consideration of the specially coupled systems, the possibility of physical realization of the phenomena of complex analytic dynamics (such as Mandelbrot and Juli
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). T
The model system manifesting phenomena peculiar to complex analytic maps is offered. The system is a non-autonomous ring cavity with nonlinear elements and filters,
Recently, a novel mixed-synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators. In mixed-synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified
Zero-lag synchronization (ZLS) is achieved in a very restricted mutually coupled chaotic systems, where the delays of the self-coupling and the mutual coupling are identical or fulfil some restricted ratios. Using a set of multiple self-feedbacks we