ﻻ يوجد ملخص باللغة العربية
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). The idea is based on a turn-by-turn transfer of the excitation from one subsystem to another (S.P.~Kuznetsov, Phys.~Rev.~Lett. bf 95 rm, 2005, 144101) accompanied with appropriate nonlinear transformation of the complex amplitude of the oscillations in the course of the process. Analytic and numerical studies are performed. Special attention is paid to an analysis of the violation of the applicability of the slow amplitude method with the decrease in the ratio of the period of the excitation transfer to the basic period of the oscillations. The main effect is the rotation of the Mandelbrot-like set in the complex parameter plane; one more effect is the destruction of subtle small-scale fractal structure of the set due to the presence of non-analytic terms in the complex amplitude equations.
The model system manifesting phenomena peculiar to complex analytic maps is offered. The system is a non-autonomous ring cavity with nonlinear elements and filters,
In this paper we present an experimental setup and an associated mathematical model to study the synchronization of two self sustained strongly coupled mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, n
This paper addresses the amplitude and phase dynamics of a large system non-linear coupled, non-identical damped harmonic oscillators, which is based on recent research in coupled oscillation in optomechanics. Our goal is to investigate the existence
We explore the coherent dynamics in a small network of three coupled parametric oscillators and demonstrate the effect of frustration on the persistent beating between them. Since a single-mode parametric oscillator represents an analog of a classica
We propose a method for detecting the presence of synchronization of self-sustained oscillator by external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the signals of self-sustained oscillator and