ﻻ يوجد ملخص باللغة العربية
According to the method, suggested in our previous work (nlin/0509012) and based on the consideration of the specially coupled systems, the possibility of physical realization of the phenomena of complex analytic dynamics (such as Mandelbrot and Julia sets) is discussed. It is shown, that unlike the case of discrete maps or differential systems with periodic driving, investigated in mentioned work, there are some difficulties in attempts to obtain the Mandelbrot set for the coupled autonomous continuous systems. A system of coupled autonomous R{o}ssler oscillators is considered as an example.
We suggest an approach to constructing physical systems with dynamical characteristics of the complex analytic iterative maps. The idea follows from a simple notion that the complex quadratic map by a variable change may be transformed into a set of
The possibility of realization of the phenomena of complex analytic dynamics for the realistic physical models are investigated. Observation of the Mandelbrot and Julia sets in the parameter and phase spaces both for the discrete maps and non-autonom
Analogy between an approximate version of Feigenbaum renormalization group analysis in complex domain and the phase transition theory of Yang-Lee (based on consideration of formally complexified thermodynamic values) is discussed. It is shown that th
Recently, a novel mixed-synchronization phenomenon is observed in counter-rotating nonlinear coupled oscillators. In mixed-synchronization state: some variables are synchronized in-phase, while others are out-of-phase. We have experimentally verified
Let f be a degree d polynomial defined over the nonarchimedean field C_p, normalized so f is monic and f(0)=0. We say f is post-critically bounded, or PCB, if all of its critical points have bounded orbit under iteration of f. It is known that if p i