ﻻ يوجد ملخص باللغة العربية
It is shown that in transient chaos there is no direct relation between averages in a continuos time dynamical system (flow) and averages using the analogous discrete system defined by the corresponding Poincare map. In contrast to permanent chaos, results obtained from the Poincare map can even be qualitatively incorrect. The reason is that the return time between intersections on the Poincare surface becomes relevant. However, after introducing a true-time Poincare map, quantities known from the usual Poincare map, such as conditionally invariant measure and natural measure, can be generalized to this case. Escape rates and averages, e.g. Liapunov exponents and drifts can be determined correctly using these novel measures. Significant differences become evident when we compare with results obtained from the usual Poincare map.
For generic 4D symplectic maps we propose the use of 3D phase-space slices which allow for the global visualization of the geometrical organization and coexistence of regular and chaotic motion. As an example we consider two coupled standard maps. Th
We present two continuous symmetry reduction methods for reducing high-dimensional dissipative flows to local return maps. In the Hilbert polynomial basis approach, the equivariant dynamics is rewritten in terms of invariant coordinates. In the metho
Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number Re and Deborah number De. The comparison of such simulations to theories of drag reduction, which are usually derived for as
This paper presents a general and systematic discussion of various symbolic representations of iterated maps through subshifts. We give a unified model for all continuous maps on a metric space, by representing a map through a general subshift over u
Unstable periodic orbits (UPOs) are a valuable tool for studying chaotic dynamical systems. They allow one to extract information from a system and to distill its dynamical structure. We consider here the Lorenz 1963 model with the classic parameters