ﻻ يوجد ملخص باللغة العربية
For generic 4D symplectic maps we propose the use of 3D phase-space slices which allow for the global visualization of the geometrical organization and coexistence of regular and chaotic motion. As an example we consider two coupled standard maps. The advantages of the 3D phase-space slices are presented in comparison to standard methods like 3D projections of orbits, the frequency analysis, and a chaos indicator. Quantum mechanically, the 3D phase-space slices allow for the first comparison of Husimi functions of eigenstates of 4D maps with classical phase space structures. This confirms the semi-classical eigenfunction hypothesis for 4D maps.
It is shown that in transient chaos there is no direct relation between averages in a continuos time dynamical system (flow) and averages using the analogous discrete system defined by the corresponding Poincare map. In contrast to permanent chaos, r
The dynamics in three-dimensional billiards leads, using a Poincare section, to a four-dimensional map which is challenging to visualize. By means of the recently introduced 3D phase-space slices an intuitive representation of the organization of the
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber
The local density of states (LDOS) is a distribution that characterizes the effect of perturbations on quantum systems. Recently, it was proposed a semiclassical theory for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is
We present a computational study of a visualization method for invariant sets based on ergodic partition theory, first proposed in [1,2]. The algorithms for computation of the time averages of observables on phase space are developed and used to prov