ﻻ يوجد ملخص باللغة العربية
Unstable periodic orbits (UPOs) are a valuable tool for studying chaotic dynamical systems. They allow one to extract information from a system and to distill its dynamical structure. We consider here the Lorenz 1963 model with the classic parameters value and decompose its dynamics in terms of UPOs. We investigate how a chaotic orbit can be approximated in terms of UPOs. At each instant, we rank the UPOs according to their proximity to the position of the orbit in the phase space. We study this process from two different perspectives. First, we find that, somewhat unexpectedly, longer period UPOs overwhelmingly provide the best local approximation to the trajectory, even if our UPO-detecting algorithm severely undersamples them. Second, we construct a finite-state Markov chain by studying the scattering of the forward trajectory between the neighbourhood of the various UPOs. Each UPO and its neighbourhood are taken as a possible state of the system. We then study the transitions between the different states. Through the analysis of the subdominant eigenvectors of the corresponding stochastic matrix we provide a novel interpretation of the mixing processes occurring in the system by taking advantage of the concept of quasi-invariant sets.
Electric drive using dc shunt motor or permanent magnet dc (PMDC) motor as prime mover exhibits bifurcation and chaos. The characteristics of dc shunt and PMDC motors are linear in nature. These motors are controlled by pulse width modulation (PWM) t
In this paper we study the breakdown of normal hyperbolicity and its consequences for reaction dynamics; in particular, the dividing surface, the flux through the dividing surface (DS), and the gap time distribution. Our approach is to study these qu
We present a new method of analysis of measure-preserving dynamical systems, based on frequency analysis and ergodic theory, which extends our earlier work [1]. Our method employs the novel concept of harmonic time average [2], and is realized as a c
It is known that the asymptotic invariant manifolds around an unstable periodic orbit in conservative systems can be represented by convergent series (Cherry 1926, Moser 1956, 1958, Giorgilli 2001). The unstable and stable manifolds intersect at an i
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body a