ﻻ يوجد ملخص باللغة العربية
We consider a one-dimensional, weakly asymmetric, boundary driven exclusion process on the interval $[0,N]cap Z$ in the super-diffusive time scale $N^2 epsilon^{-1}_N$, where $1ll epsilon^{-1}_N ll N^{1/4}$. We assume that the external field and the chemical potentials, which fix the density at the boundaries, evolve smoothly in the macroscopic time scale. We derive an equation which describes the evolution of the density up to the order $epsilon_N$.
We prove a law of large numbers for the empirical density of one-dimensional, boundary driven, symmetric exclusion processes with different types of non-reversible dynamics at the boundary. The proofs rely on duality techniques.
A fractional Ficks law and fractional hydrostatics for the one dimensional exclusion process with long jumps in contact with infinite reservoirs at different densities on the left and on the right are derived.
We construct an exclusion process with Bernoulli product invariant measure and having, in the diffusive hydrodynamic scaling, a non symmetric diffusion matrix, that can be explicitly computed. The antisymmetric part does not affect the evolution of t
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynami
Consider a system of particles performing nearest neighbor random walks on the lattice $ZZ$ under hard--core interaction. The rate for a jump over a given bond is direction--independent and the inverse of the jump rates are i.i.d. random variables be