ترغب بنشر مسار تعليمي؟ اضغط هنا

How do random Fibonacci sequences grow?

88   0   0.0 ( 0 )
 نشر من قبل Elise Janvresse
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Elise Janvresse




اسأل ChatGPT حول البحث

We study two kinds of random Fibonacci sequences defined by $F_1=F_2=1$ and for $nge 1$, $F_{n+2} = F_{n+1} pm F_{n}$ (linear case) or $F_{n+2} = |F_{n+1} pm F_{n}|$ (non-linear case), where each sign is independent and either + with probability $p$ or - with probability $1-p$ ($0<ple 1$). Our main result is that the exponential growth of $F_n$ for $0<ple 1$ (linear case) or for $1/3le ple 1$ (non-linear case) is almost surely given by $$int_0^infty log x d u_alpha (x), $$ where $alpha$ is an explicit function of $p$ depending on the case we consider, and $ u_alpha$ is an explicit probability distribution on $RR_+$ defined inductively on Stern-Brocot intervals. In the non-linear case, the largest Lyapunov exponent is not an analytic function of $p$, since we prove that it is equal to zero for $0<ple1/3$. We also give some results about the variations of the largest Lyapunov exponent, and provide a formula for its derivative.



قيم البحث

اقرأ أيضاً

142 - Elise Janvresse 2008
We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for $nge 1$, $F_{n+2} = lambda F_{n+1} pm F_{n}$ (linear case) and $widetilde F_{n+2} = |lambda widetilde F_{n+1} pm widetilde F_{n}|$ (non-linear case), where each $pm$ sign is independent and either $+$ with probability $p$ or $-$ with probability $1-p$ ($0<ple 1$). Our main result is that, when $lambda$ is of the form $lambda_k = 2cos (pi/k)$ for some integer $kge 3$, the exponential growth of $F_n$ for $0<ple 1$, and of $widetilde F_{n}$ for $1/k < ple 1$, is almost surely positive and given by $$ int_0^infty log x d u_{k, rho} (x), $$ where $rho$ is an explicit function of $p$ depending on the case we consider, taking values in $[0, 1]$, and $ u_{k, rho}$ is an explicit probability distribution on $RR_+$ defined inductively on generalized Stern-Brocot intervals. We also provide an integral formula for $0<ple 1$ in the easier case $lambdage 2$. Finally, we study the variations of the exponent as a function of $p$.
An infinite sequence of real random variables $(xi_1, xi_2, dots)$ is said to be rotatable if every finite subsequence $(xi_1, dots, xi_n)$ has a spherically symmetric distribution. A celebrated theorem of Freedman states that $(xi_1, xi_2, dots)$ is rotatable if and only if $xi_j = tau eta_j$ for all $j$, where $(eta_1, eta_2, dots)$ is a sequence of independent standard Gaussian random variables and $tau$ is an independent nonnegative random variable. Freedmans theorem is equivalent to a classical result of Schoenberg which says that a continuous function $phi : mathbb{R}_+ to mathbb{C}$ with $phi(0) = 1$ is completely monotone if and only if $phi_n: mathbb{R}^n to mathbb{R}$ given by $phi_n(x_1, ldots, x_n) = phi(x_1^2 + cdots + x_n^2)$ is nonnegative definite for all $n in mathbb{N}$. We establish the analogue of Freedmans theorem for sequences of random variables taking values in local fields using probabilistic methods and then use it to establish a local field analogue of Schoenbergs result. Along the way, we obtain a local field counterpart of an observation variously attributed to Maxwell, Poincare, and Borel which says that if $(zeta_1, ldots, zeta_n)$ is uniformly distributed on the sphere of radius $sqrt{n}$ in $mathbb{R}^n$, then, for fixed $k in mathbb{N}$, the distribution of $(zeta_1, ldots, zeta_k)$ converges to that of a vector of $k$ independent standard Gaussian random variables as $n to infty$.
246 - Elise Janvresse 2008
A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/- g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n. We generalize these sequences to the case when the coin is unbalanced (denoting by p the probabi lity of a +), and the recurrence relation is of the form g_n = |lambda g_{n-1} +/- g_{n-2} |. When lambda >=2 and 0 < p <= 1, we prove that the expected value of g_n grows exponentially fast. When lambda = lambda_k = 2 cos(pi/k) for some fixed integer k>2, we show that the expected value of g_n grows exponentially fast for p>(2-lambda_k)/4 and give an algebraic expression for the growth rate. The involved methods extend (and correct) those introduced in a previous paper by the second author.
186 - Soohyun Park 2014
The generalized Fibonacci sequences are sequences ${f_n}$ which satisfy the recurrence $f_n(s, t) = sf_{n - 1}(s, t) + tf_{n - 2}(s, t)$ ($s, t in mathbb{Z}$) with initial conditions $f_0(s, t) = 0$ and $f_1(s, t) = 1$. In a recent paper, Amdeberhan, Chen, Moll, and Sagan considered some arithmetic properites of the generalized Fibonacci sequence. Specifically, they considered the behavior of analogues of the $p$-adic valuation and the Riemann zeta function. In this paper, we resolve some conjectures which they raised relating to these topics. We also consider the rank modulo $n$ in more depth and find an interpretation of the rank in terms of the order of an element in the multiplicative group of a finite field when $n$ is an odd prime. Finally, we study the distribution of the rank over different values of $s$ when $t = -1$ and suggest directions for further study involving the rank modulo prime powers of generalized Fibonacci sequences.
Recent experiments have focused attention on the properties of chains of atoms in which the atoms are either in their ground states or in highly excited Rydberg states which block similar excitations in their immediate neighbors. As the low energy Hi lbert space of such chains is isomorphic to that of a chain of Fibonacci anyons, they have been proposed as a platform for topological quantum computation and for simulating anyon dynamics. We show that generic local operators in the Rydberg chain correspond to non-local anyonic operators that do not preserve a topological symmetry of the physical anyons. Consequently, we argue that Rydberg chains do not yield Fibonacci anyons and quantum computation with Rydberg atoms is not topologically protected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا